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MOTIVATION

(the long path from photons to a digital image)

hLa 4 Bad Pl [ Black
| Correctios Level
i > |
g
- P |
Image " Tone
Enhancing Mapping
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MOTIVATION

Or you might have several images

Stereo Optical Flow

d

Deblurri ng 5 <ANVIDIA



MOTIVATION

Non-standard imaging sensors

9w (t) &

bow| @ [F

ToF Camera

Event-based Cameras Time-of-flight Cameras

6 <ANVIDIA.



Image Processing with Deep Learning

Denoising

Demosaicking

Loss functions for Image Processing

Multiple Images

DL for Stereo
DL for Optical Flow

DL for Deblurring

DL for Other Sensors

Event-based

Time-of-Flight

OUTLINE

7
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IMAGE PROCESSING WITH DEEP LEARNING




DENOISING

Several types of noise involved in the image formation:
Photon shot noise
Dark current (AKA thermal noise)
Photo-response non-uniformity
Readout noise:
Reset noise (charge-to-voltage transfer)
White noise (during voltage amplification)

Quantization noise (ADC)

9 NVIDIA.



DENOISING

Before the ML era

om
0001
1) Signal processing (aka Fourier, Wavelet) techniques - %
- il
EH 70 220 30 0 50 0
2) Non-Local approaches (NLM, BM3D)
IMAGE DICTIONARY
. 3 . . . popopAEn - - - - -
3) Fixed (DCT, Fourier, Wavelet) vs. Learned dictionaries oE-g87asa 5
. . HE R
External dictionaries R
Internal dictionaries
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DENOISING

At the beginning of the ML era

Auto-Encoder (AE): learn x = f(x) function

Need to avoid the trivial solution f = I:

- shrink space (compressed representation)

- force sparsity -
Denoising AE: input is corrupted by noise, x = f(x + n)

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, “Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion”, 2010.

11 <ANnVIDIA.



At the beginning of the ML era (another stacked denoising AE)

A stacked denoised AE for
denoising and inpainting

Impose sparse representation

(an additional term in the
cost function)

Junyuan Xie, Linli Xu, Enhong Chen,

Image Denoising and Inpainting with
Deep Neural Networks, NIPS 2012

DENOISING

Image from http://staff.ustc.edu.cn/-linlixu/papers/nips12.pdf

/’\‘ o £ 5 2 5 & 3 2

- N
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DENOISING

At the beginning of the ML era

“A plain multilayer perceptron (MLP) applied to
image patches” (the simplest architecture ever ©)

Can be trained on a single or multiple noise levels
(assurming white Gaussian noise)

Image quality comparable with SOA BM3D (@ 0.1% of
the engineering effort ©)

A large training dataset is required

Can be applied to other kinds of noises (the DNN

learns both processing filters and basis to represent
the image)

H. C. Burger, C. J. Schuler and S. Harmeling, "Image denoising:

Can plain neural networks compete with BM3D?,” IEEE
Conference on Computer Vision and Pattern Recognition, 2012

clean (name: barbara)

noisy (o = 25)PSNR:20.19dB BM3D: PSNR:30.67dB

ours: PSNR:29.21dB

13 <ANnVIDIA.



DENOISING

Kernel Predicting Network (KPN) (1)

.

e o o & e

Reference frume (a) Reference  (b) Average (c) HDR (d) NLM (¢) VBMAD (1) Ours (KPN)

Image from http://people.eecs.berkeley.edu/-bmild/kpn/

Mildenhall, Ben et al. “Burst Denoising with Kernel Prediction Networks.” CoRRabs/1712.02327 (2017)

14 <ANnVIDIA.



DENOISING

Kernel Predicting Network (KPN) (2)

Aim: “produce a single clean image from a noisy
burst of N images captured by a handheld
camera”

Synthetize the dataset with global / local shift
(from real images)

KPN: our architecture “generates a stack of per-
pixel filter kernels that jointly aligns, averages,
and denoises a burst to produce a clean version of
the reference frame”.

Image from https://arxiv.org/pdf/1712.02327.pdf

Cost function including an alignment terms,
vanishing during training.

Mildenhall, Ben et al. “Burst Denoising with Kernel Prediction
Networks.” CoRRabs/1712.02327 (2017)

15 <4 NVIDIA.



DENOISING

Noise to noise (no need for clean data?) (1)

Example training pairs  Input (p =~ 0.25) Lo Ly Clean targets Ground truth
17.12dB 26.89dB 35.75dB 35.82dB PSNR

Figure 3. In case of text removal the mean (L2 loss) is not the correct answer but median (L) is.

p=022 p=0.381

Example training pairs  Input (p = 0.70) L2/ Ly Lo Clean targets Ground truth
8.89dB 13.02dB/ 16.36 dB 28.43dB 28.86dB PSNR

Figure 4. In case of random-valued impulse noise the mode (L) produces unbiased results, unlike mean (L2) or median (L ).
Image from https://arxiv.org/pdf/1803.04189.pdf

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, Timo Aila, “Noise2Noise:

Learning Image Restoration without Clean Data”, ICML 2018. »

<ANVIDIA.



DENOISING

Desired output = noisy image

Use the proper cost function (e.g. L2 for Gaussian
noise), s.t. the expected value of the desired output

is the ground truth

Et voila! Converge time and image quality
comparable to those achieved with clean targets.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras,

Miika Aittala, Timo Aila, “Noise2Noise: Learning Image Restoration without
Clean Data”, ICML 2018.

Noisy desired output

Ground truth

17
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Image credit: Wikipedia

DEMOSAICKING

(from RGGB Bayer to RBG images)

Incoming kght

Fiter layer

Sensor array

Resulting pattern

Malvar et al

u

Image credit: Marc Levoy

(a) (b) (<) (d)

., High-Quality Linear Interpolation for Demosaicing of Bayer-Patterned Color Images, 2004

18 <ANVIDIA.



DEMOSAICKING

ML for demosaicing (1)

RAW space Linear mosaiced space Linear demosaiced space sRGB space
A B s .
- - . i |Linear Transformations: i Image correction: 3x3 color| ;

H . : - - : i _|Camera output

Scene [P Optlgal —> Colos hlfer —> Analog/ Dl-gltal ! black-level adjustment - Demosaicing {—»{ transform and Gamma [ P
operations Array (CFA) Conversion and color scaling . correction (nonlinear) (sRGB)
.{.: =~ \
Where demosaicin ;' ' Where demosaicing

Where demosaicing
algorithms should be
designed for

i algorithms are usually

g
performance should be { :
E E being designed for

evaluated

Fig. 1: A simplified camera pipeline. Many academic demosaicing algorithms work on fully developed sSRGB images, masked
by a CFA pattern. Instead, a practical method must use raw linear-space images as its input (orange block), since the 3x3 color
transform to follow (green block) requires all missing measurements to have been filled in. Nonetheless, one should aim at
optimizing the quality of the output in SRGB space, where images are fully developed and ready to be viewed by a human.

Image https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/khashabi2014demosaicing. pdf

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary,Andrew W. Fitzgibbon, “Joint Demosaicing and Denoising via
Learned Non-parametric Random Fields”, 2013.
19 <InvIDIA.



DEMOSAICKING

“... two challenges to overcome by a demosaicing method: first, it needs to model and respect
the statistics of natural images in order to reconstruct natural looking images; second, it
needs to be able to perform well in the presence of noise.”

Introduce a large dataset for learning demosaicking and denoising

PSRN or SSIM can be optimized (more on this later!)

Overcome SOA, with less engineering effort

End-to-end camera pipeline training

Train Regression Tree Fields (ML, not DL)

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary,Andrew W. Fitzgibbon, “Joint Demosaicing and Denoising via
Learned Non-parametric Random Fields”, 2013.

20 NVIDIA.



DEMOSAICKING

Patch selection improves results (1)

reference FlexISP
32,5 dB

[Condat 2012]
32.4 dB

Figure 1: We propose a data-driven approach for jointly solving denoising and demosaicking. By carefully designing a dataset made of rare
but challenging image features, we train a neural network that outperforms both the state-of-the-art and commercial solutions on demosaicking
alone (group of images on the left, insets show error maps), and on joint denoising—demosaicking (on the right, insets show close-ups). The
benefit of our method is most noticeable on difficult image structures that lead to moiré or zippering of the edges.

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic.pdf

Michaél Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand, “Deep joint demosaicking and denoising“, ACM
Trans. Graph., 2016

21 <ANVIDIA.



DEMOSAICKING

Patch selection improves results (2)

Joint demosaicking and denoising

“To create a better training set, we
present metrics to identify difficult

patches and techniques for mining
community photographs for such

npu
p a tC h es . ” : forward masked input

Figure 2: Our proposed architecture. The first layer of the network packs 2 x 2 blocks in the Bayer image into a 4D vector to restore

° ° o °
Train (all data), find difficult patches,
. . . g.rill u_ml concatenate a masked copy of the input mosaick. We perform a last group of convolutions at full resolution this time to produce the
r e - t r a-I n (w e-l g h t e d l o SS f u n C t-l o n ) . final features. We linearly combine them to produce the demosaicked output.

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic. pdf

Convolutional architecture with
additional input for the noise level and

skip connections.

22 <NVIDIA.



DEMOSAICKING

Using GANs

Genertor Network Skip connection color images

yolgsay
0[S

+
=
s

Rearranged 4D vector

16 times
CFA images
(a)
o , ResBlock network
Discriminator Network .

. \
o
2
z
a
= Conv
i ~ o e Relu
d ) E 8 A

e E 2 ¢ . > =

2 = & 3 ,,z, True Conv

2 z 7 3 3 or

) = z z .

s - 7 z & False

e 3
-
&
Z 7 times addition
(b) (c)

Fig. 2: The architecture of our Generative adversarial networks for joint demosaicing and denoise. The top is the generator
network structure. The lower left corner is the discriminator network structure. The bottom right is the structure of the
residual block

Images from https://arxiv.org/pdf/1802.04723.pdf

> Fake/Real

quality assurance

Fig. 1: Introducing GAN as a strategy of quality assurance in

JDD.

Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, “Joint Demosaicing and Denoising with Perceptual Optimization on

a Generative Adversarial Network”, 2018.

23 <ANVIDIA.



LOSS FUNCTIONS




LOSS FUNCTIONS FOR IMAGE PROCESSING

Some Deep Neural
Network




MEASURING IMAGE QUALITY

27 <ANVIDIA.

Image adapted from https:// ece.uwaterloo.ca/~z70wang/ research/ssim/



MEASURING IMAGE QUALITY

BT = *wgli |
=f 3 =¥ <
: it (S W

| a3 Jies
ﬁ | .1 ( i : :
3 e Il ‘:F o

| :
| =l

0.988 SSIM 0.662

28 <ANVIDIA.

Image adapted from https:// ece.uwaterloo.ca/~z70wang/ research/ssim/



MEASURING IMAGE QUALITY

lo(p) = /I (p) — I3 (p)

SSH\I([llg) — l([l 12) . C([l, 12) : 8([1, 12)



LOSS FUNCTIONS FOR IMAGE PROCESSING

Some Deep Neural
Network




MEASURING IMAGE QUALITY

li(p) = |Ii(p) — I2(p)|

tr(p) = V1t (p) — I3(p)
SSH\I(Illg) — l([l Ig) y C(Il,lg) . 8([1, [2)

MS-SSIM (1, I2) = Multiscale(SSIM (14, 1))



JOINT DEMOSAICKING AND DENOISING

Network architecture

=[-1il:3

[:Mix = (X - 51 + ,B - MS-SSIM

Zhao et al., “Loss Functions for Image Restoration With Neural Networks,” IEEE TIP, 2017

perceptual
loss

32 <nVIDIA.
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RESULTS

Visual comparison (+ unsharp masking)

Noisy BM3D (state of the art) Ground truth




RESULTS

Clean MS-SSIM MS-SSIM + ¢,

38 NVIDIA.



DO WE NEED HANDCRAFTED LOSSES?

Gatys et al., “A Neural Algorithm of Artistic Style,” Arxiv 2015 39 GNVIDIA



GATYS LOSS

2
Lcontent(l) & 2;; (Filj - Pzgj)

2
Lstyte(l) o< 25 (ij B Ai‘j)

Gatys et al., “A Neural Algorithm of Artistic Style,” Arxiv 2015

40 <Anvip



PERCEPTUAL LOSS

Style Target

image ' Image Transform Net

€¢,re1u1_2 €¢,relu2_2
style style
A AA

€¢,relu3_3 £¢,relu4_3

style

A

Loss Network (VGG-16)

Content Target

14

qﬁ,!'e'luS_B
feat

Johnson et al., “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” ECCV 2016

42 SANVIDIA.



PERCEPTUAL LOSS

Content Gatys et al [10] Ours

Style transfer

Super-resolution

L

Ground Truth Bicubic SRCNN [11]  Perceptual loss

Johnson et al., “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” ECCV 2016 3 Anvioia



FEATURES VS HANDCRAFTED METRICS

Patch 0 Reference Patch 1 : Patch 0 Reference Patch 1 : Patch 0 Reference Patch 1
I I - .
1 I
1 I
1 I
1 I
[ I
1 I
1 I
Humans 1 ‘/ I
| I
L2/PSNR, SSIM, FSIM | v | v
| I
Random Networks , v | v
Unsupervised Networks | ‘/ |
Self-Supervised Networks : ‘/ :
Supervised Networks 1 I
P v .
44 SANVIDIA.

Zhang et al., “The Unreasonable Effectiveness of Deep Features as a Perceptual Metric,” IEEE CVPR 2018



GENERATIVE ADVERSARIAL NETWORKS

Image from: Dong et al., “Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network,” Arxiv 2018 45 <AnVIDIA



GENERATIVE ADVERSARIAL NETWORKS

Natural Image Manifold
MSE-based Solution

”pixel-wise average
A of possible solutions”

Image from: Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,” CVPR 2017 46 <ANVIDIA.



DEMOSAICKING

Using GANs

Genertor Network Skip connection color images

yolgsay
0[S

+
=
s

Rearranged 4D vector

16 times
CFA images
(a)
o , ResBlock network
Discriminator Network .

. \
o
2
z
a
= Conv
i ~ o e Relu
d ) E 8 A

e E 2 ¢ . > =

2 = & 3 ,,z, True Conv

2 z 7 3 3 or

) = z z .

s - 7 z & False

e 3
-
&
Z 7 times addition
(b) (c)

Fig. 2: The architecture of our Generative adversarial networks for joint demosaicing and denoise. The top is the generator
network structure. The lower left corner is the discriminator network structure. The bottom right is the structure of the
residual block

Images from https://arxiv.org/pdf/1802.04723.pdf

> Fake/Real

quality assurance

Fig. 1: Introducing GAN as a strategy of quality assurance in

JDD.

Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, “Joint Demosaicing and Denoising with Perceptual Optimization on

a Generative Adversarial Network”, 2018.

47 <ANVIDIA.



SUPER-RESOLUTION WITH GANS

bicubic SRResNet SRGAN original
(21.59dB/0.6423) ~ (21.15dB/0.6868)

Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,” CVPR 2017 48 <ANVIDIA.



TASK-SPECIFIC PROCESSING

| Noisy : : Mavawol  High-level
halsd Differentiable, low-level |Esasyfas cgmputer’
rocessin w
P g ‘ vision model -

N iterations

Pretrained Inception-v4
AurasaTng

3 lux

6 lux

PSNR 17.97 dB

PSNR 20.71 dB
49 <ANVIDIA.

PSNR 16.39 dB

Diamond et al., “Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data,” Arxiv 2017



MULTIPLE IMAGES




DL FOR STEREO

Computing disparity maps using 2D convolutions

Use 2D convolutions: Example methods:

Features extracted from images DispNet

[Mayer et al. 2015]
Features are cross-correlated

Cascade Residual Learning (CRL)
Hourglass network [Pang et al. 2017]

with skip connections

Disparities predicted in last layer

51 <4nvIDIA


https://www.slideshare.net/yuhuang/optic-flow-estimation-with-deep-learning

DL FOR STEREO

Computing disparity maps using 3D convolutions

Use 3D convolutions: Example methods:

Better results

More computation (slower)

1~ T

-
N PR
=a L. gnltl
—
[

Input Stereo Images | 2D Convolution ‘ Cost Volume

Geometry and Context (GC-Net)
[Kendall et al. 2017]

Pyramid Stereo Matching (PSM-Net)

[Chang and Chen 2018]

Multi-Scale 3D Convolution

Shared Weights | | Shared Weights ﬂ
N [r ’ \:\'> ﬂﬂ*@ * @ ‘ .-‘

3D Deconvolution Soft ArgMax Disparities

[from

]
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https://arxiv.org/pdf/1703.04309.pdf

DL FOR OPTICAL FLOW

Computing optical flow using 2D convolutions

Use 2D convolutions: Example methods:

Features extracted from images FlowNet / FlowNet2

[Fischer et al. 2015] [Ilg et al. 2017]
Features are cross-correlated

PWC-Net (multiscale/warping)
Hourglass network with skip [Sun et al. 2018]

connections

Disparities predicted in last layer

FlowNetCorr

53 <ANVIDIA.



DEEP VIDEO DEBLURRING

[Su, et al., CVPR 2017]

DNNs learn to handle deblurring challenges implicitly
Unknown spatially-varying blur kernel
Frame-to-frame mis-alighment

Simple U-Net with skip connections + L2-loss

D Down-covolutional kayer D Up-covolutional layer D Flat-covolutional |ayer - = Skip connecton NVIDIA.



DEBLURGAN

[Kupyn, et a[., CVPR 201 8] Wasserstein distance

Simple ResNet architecture

More perceptually-motivated loss function Perceptual 103 + |
WGAN loss
T
L=Lcan + A-Lx g
v v [+ 4
adv loss content losg
total loss

Generator

AT AW

Blurred

56 <4 nNVIDIA.



I

79

78+

Self-Supervised Loss

Blurry Video Deblur Network

REBLUR2DEBLUR

[Chen, et al., ICCP 2018]

Data-driven Deblurring
Input
upervised Loss

0

Re-blurred Image

<

Reblurring

Physics-based Reblurring

Optical Flow Network

~-K (p)

Pixel-wise Blur Kernels

Blur Kernel Estimation

58 <AnVIDIA.



- .
Deep Video
- Deblurring
:
_ - o
‘
Reblur2Deblur
Ground Truth
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Deep Video
Deblurring

DeblurGAN

-~ Reblur2Deblur

Ground Truth
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OTHER SENSORS




BINARY GRADIENT CAMERAS

Gottardi et al., “A 100 yW 128 x 64 pixels contrast-based asynchronous binary vision sensor for sensor networks applications. IEEE Journal of Solid-State Circuits, 2009 66 <ANVIDIA.



BINARY GRADIENT CAMERAS

Jayasuriya et al., “Reconstructing Intensity Images from Binary Spatial Gradient Cameras,” IEEE CVPRW, ¢17% <nven



TIME-OF-FLIGHT CAMERAS

9w (t)

Dus )

ToF Camera

Image from: Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018

&
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TIME-OF-FLIGHT CAMERAS

Phase & Amplitude Depth Baseline

Traditonal

Proposed

|
g | — K7
s M|\ e ! g
= A A o o e | = &
g % I E RS
S -, | 7 (= o »
4 256 | Q W oi" 128 25 11
N
RN &S @ S & | Q«'& SRS A

D Down convolution D Up convolution I:I Flat convolution D ResNet block . Total variation - - Skip connection

69 <AnNVIDIA.

Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018



TIME-OF-FLIGHT CAMERAS

Phase/Corr. Depth2Depth Proposed

CONCAVEWALL

KITCHEN

Z
)
S
e~
[©
Z
2
3

Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018 70 <ZnviDiA



CONCLUSION

Image Processing with Deep Learning
Single Image
Multiple Images

Other Sensors

Recurring Themes
Loss Functions (GANs)
Encoder/Decoder Networks

Correlation

73 NVIDIA.



YOUR LIFE’S WORK
STARTS HERE

JOIN NVIDIA

100 Best Companies to Work For

— Fortune

Most Innovative Companies
— Fast Company

World’s Most Admired Companies

— Fortune

Employees’ Choice: Highest Rated CEOs

— Glassdoor

50 Smartest Companies
— MIT Tech Review

INTERESTED? Email. aiiohs@nvidia.com

< I NVIDIA.



mailto:aijobs@nvidia.com

