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MOTIVATION
(the long path from photons to a digital image)

Demosaic Denoise

Bad Pixel 
Correction

Image 
Enhancing

Tone 
Mapping

Lens 
Correction

Black 
Level

Metering

AF/AE
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MOTIVATION
Or you might have several images

Stereo Optical Flow

Deblurring
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MOTIVATION
Non-standard imaging sensors

Event-based Cameras Time-of-flight Cameras
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OUTLINE

Image Processing with Deep Learning

• Denoising

• Demosaicking

• Loss functions for Image Processing

Multiple Images

• DL for Stereo

• DL for Optical Flow

• DL for Deblurring

DL for Other Sensors

• Event-based

• Time-of-Flight



8

IMAGE PROCESSING WITH DEEP LEARNING
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DENOISING

Several types of noise involved in the image formation:

• Photon shot noise

• Dark current (AKA thermal noise)

• Photo-response non-uniformity

• Readout noise:

• Reset noise (charge-to-voltage transfer)

• White noise (during voltage amplification)

• Quantization noise (ADC)
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DENOISING

1) Signal processing (aka Fourier, Wavelet) techniques

2) Non-Local approaches (NLM, BM3D)

3) Fixed (DCT, Fourier, Wavelet) vs. Learned dictionaries

External dictionaries

Internal dictionaries

Before the ML era

Image from https://en.wikipedia.org/wiki/Fourier_analysis

Image from http://www.cs.tut.fi/~foi/3D-DFT/BM3DDEN_article.pdf

Image from https://arxiv.org/pdf/1304.3573.pdf

IMAGE DICTIONARY
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DENOISING

Auto-Encoder (AE): learn x = f(x) function

Need to avoid the trivial solution f = I:

- shrink space (compressed representation)

- force sparsity

Denoising AE: input is corrupted by noise, x = f(x + n)

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, “Stacked Denoising 
Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion”, 2010.

At the beginning of the ML era

input

output



12NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

A stacked denoised AE for
denoising and inpainting

Impose sparse representation
(an additional term in the
cost function)

Junyuan Xie, Linli Xu, Enhong Chen,
Image Denoising and Inpainting with
Deep Neural Networks, NIPS 2012

DENOISING
At the beginning of the ML era (another stacked denoising AE)

Image from http://staff.ustc.edu.cn/~linlixu/papers/nips12.pdf

Image from http://staff.ustc.edu.cn/~linlixu/papers/nips12.pdf
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DENOISING
At the beginning of the ML era

“A plain multilayer perceptron (MLP) applied to
image patches” (the simplest architecture ever J)

Can be trained on a single or multiple noise levels
(assuming white Gaussian noise)

Image quality comparable with SOA BM3D (@ 0.1% of
the engineering effort J)

A large training dataset is required

Can be applied to other kinds of noises (the DNN
learns both processing filters and basis to represent
the image)

H. C. Burger, C. J. Schuler and S. Harmeling, "Image denoising: 
Can plain neural networks compete with BM3D?,” IEEE 
Conference on Computer Vision and Pattern Recognition, 2012
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Mildenhall, Ben et al. “Burst Denoising with Kernel Prediction Networks.” CoRRabs/1712.02327 (2017)

DENOISING
Kernel Predicting Network (KPN) (1)

Image from http://people.eecs.berkeley.edu/~bmild/kpn/
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Aim: “produce a single clean image from a noisy
burst of N images captured by a handheld
camera”

Synthetize the dataset with global / local shift
(from real images)

KPN: our architecture “generates a stack of per-
pixel filter kernels that jointly aligns, averages,
and denoises a burst to produce a clean version of
the reference frame”.

Cost function including an alignment terms,
vanishing during training.

Mildenhall, Ben et al. “Burst Denoising with Kernel Prediction 
Networks.” CoRRabs/1712.02327 (2017)

DENOISING
Kernel Predicting Network (KPN) (2)

Image from https://arxiv.org/pdf/1712.02327.pdf
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Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, Timo Aila, “Noise2Noise: 
Learning Image Restoration without Clean Data”, ICML 2018.

DENOISING
Noise to noise (no need for clean data?) (1)

Image from https://arxiv.org/pdf/1803.04189.pdf



17NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Desired output = noisy image

Use the proper cost function (e.g. L2 for Gaussian
noise), s.t. the expected value of the desired output
is the ground truth

Et voilà! Converge time and image quality
comparable to those achieved with clean targets.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras,
Miika Aittala, Timo Aila, “Noise2Noise: Learning Image Restoration without
Clean Data”, ICML 2018.

DENOISING
Noise to noise (no need for clean data?) (2)

Ground truth

Noisy desired output
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DEMOSAICKING

Image credit: Marc Levoy
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(from RGGB Bayer to RBG images)

Malvar et al., High-Quality Linear Interpolation for Demosaicing of Bayer-Patterned Color Images, 2004
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Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary,Andrew W. Fitzgibbon, “Joint Demosaicing and Denoising via 
Learned Non-parametric Random Fields”, 2013.

DEMOSAICKING
ML for demosaicing (1)

Image https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/khashabi2014demosaicing.pdf
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“… two challenges to overcome by a demosaicing method: first, it needs to model and respect 
the statistics of natural images in order to reconstruct natural looking images; second, it 
needs to be able to perform well in the presence of noise.”

Introduce a large dataset for learning demosaicking and denoising

PSRN or SSIM can be optimized (more on this later!)

Overcome SOA, with less engineering effort

End-to-end camera pipeline training

Train Regression Tree Fields (ML, not DL)

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary,Andrew W. Fitzgibbon, “Joint Demosaicing and Denoising via 
Learned Non-parametric Random Fields”, 2013.

DEMOSAICKING
ML for demosaicing (2)



21NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand, “Deep joint demosaicking and denoising“, ACM 
Trans. Graph., 2016

DEMOSAICKING
Patch selection improves results (1)

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic.pdf
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Joint demosaicking and denoising

“To create a better training set, we 
present metrics to identify difficult 
patches and techniques for mining 
community photographs for such 
patches.”

Train (all data), find difficult patches, 
re-train (weighted loss function).

Convolutional architecture with 
additional input for the noise level and 
skip connections.

DEMOSAICKING
Patch selection improves results (2)

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic.pdf
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Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, “Joint Demosaicing and Denoising with Perceptual Optimization on 
a Generative Adversarial Network”, 2018.

DEMOSAICKING
Using GANs

Images from https://arxiv.org/pdf/1802.04723.pdf
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LOSS FUNCTIONS
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LOSS FUNCTIONS FOR IMAGE PROCESSING

Some Deep Neural 
Network

Corrupted Reconstructed

Ground Truth
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MEASURING IMAGE QUALITY

Image adapted from https://ece.uwaterloo.ca/~z70wang/research/ssim/

Original
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MEASURING IMAGE QUALITY

Image adapted from https://ece.uwaterloo.ca/~z70wang/research/ssim/

Original

0.988 0.662
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MEASURING IMAGE QUALITY
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LOSS FUNCTIONS FOR IMAGE PROCESSING

Some Deep Neural 
Network

Corrupted Reconstructed

Ground Truth

Perceptual loss
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MEASURING IMAGE QUALITY
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JOINT DEMOSAICKING AND DENOISING
Network architecture

perceptual
loss
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Zhao et al., “Loss Functions for Image Restoration With Neural Networks,” IEEE TIP, 2017
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Ground truth
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Noisy
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RESULTS
Visual comparison (+ unsharp masking)

Noisy BM3D (state of the art) Ground truth
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RESULTS
Why mixing MS-SSIM and    ?
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DO WE NEED HANDCRAFTED LOSSES?

Gatys et al., “A Neural Algorithm of Artistic Style,” Arxiv 2015
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GATYS LOSS

Gatys et al., “A Neural Algorithm of Artistic Style,” Arxiv 2015
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PERCEPTUAL LOSS

Johnson et al., “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” ECCV 2016
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PERCEPTUAL LOSS

Johnson et al., “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” ECCV 2016
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Zhang et al., “The Unreasonable Effectiveness of Deep Features as a Perceptual Metric,” IEEE CVPR 2018

FEATURES VS HANDCRAFTED METRICS
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GENERATIVE ADVERSARIAL NETWORKS

Image from: Dong et al., “Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network,” Arxiv 2018
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GENERATIVE ADVERSARIAL NETWORKS

Image from: Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,” CVPR 2017
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Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, “Joint Demosaicing and Denoising with Perceptual Optimization on 
a Generative Adversarial Network”, 2018.

DEMOSAICKING
Using GANs

Images from https://arxiv.org/pdf/1802.04723.pdf
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SUPER-RESOLUTION WITH GANS

Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,” CVPR 2017
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TASK-SPECIFIC PROCESSING

Diamond et al., “Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data,” Arxiv 2017

Differentiable, low-level 
processing

High-level, 
computer 

vision model
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MULTIPLE IMAGES
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DL FOR STEREO
Computing disparity maps using 2D convolutions

[from https://www.slideshare.net/yuhuang/optic-flow-estimation-with-deep-learning ]

Use 2D convolutions:

• Features extracted from images

• Features are cross-correlated

• Hourglass network 
with skip connections

• Disparities predicted in last layer

Example methods:

• DispNet
[Mayer et al. 2015]

• Cascade Residual Learning (CRL)
[Pang et al. 2017]

https://www.slideshare.net/yuhuang/optic-flow-estimation-with-deep-learning
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DL FOR STEREO
Computing disparity maps using 3D convolutions

Use 3D convolutions:

• Better results

• More computation (slower)

Example methods:

• Geometry and Context (GC-Net)
[Kendall et al. 2017]

• Pyramid Stereo Matching (PSM-Net)
[Chang and Chen 2018]

[from https://arxiv.org/pdf/1703.04309.pdf ]

https://arxiv.org/pdf/1703.04309.pdf
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DL FOR OPTICAL FLOW
Computing optical flow using 2D convolutions

Use 2D convolutions:

• Features extracted from images

• Features are cross-correlated

• Hourglass network with skip 
connections

• Disparities predicted in last layer

Example methods:

• FlowNet / FlowNet2
[Fischer et al. 2015] [Ilg et al. 2017]

• PWC-Net (multiscale/warping)
[Sun et al. 2018]
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DEEP VIDEO DEBLURRING

DNNs learn to handle deblurring challenges implicitly

• Unknown spatially-varying blur kernel

• Frame-to-frame mis-alignment

• Simple U-Net with skip connections + L2-loss 

[Su, et al., CVPR 2017]
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DEBLURGAN

Simple ResNet architecture 

More perceptually-motivated loss function

[Kupyn, et al., CVPR 2018]
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REBLUR2DEBLUR
[Chen, et al., ICCP 2018]
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Input

Ground Truth

Deep Video
Deblurring

DeblurGAN

Reblur2Deblur
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Input

Ground Truth

Deep Video
Deblurring

DeblurGAN

Reblur2Deblur
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OTHER SENSORS
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BINARY GRADIENT CAMERAS

Gottardi et al., “A 100 µW 128�64 pixels contrast-based asynchronous binary vision sensor for sensor networks applications. IEEE Journal of Solid-State Circuits, 2009
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BINARY GRADIENT CAMERAS

Jayasuriya et al., “Reconstructing Intensity Images from Binary Spatial Gradient Cameras,” IEEE CVPRW, ‘17
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TIME-OF-FLIGHT CAMERAS

Image from: Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018
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TIME-OF-FLIGHT CAMERAS

Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018
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TIME-OF-FLIGHT CAMERAS

Su et al., “Deep End-to-End Time-of-Flight Imaging,” IEEE CVPR 2018
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CONCLUSION

Image Processing with Deep Learning

• Single Image

• Multiple Images

• Other Sensors

Recurring Themes

• Loss Functions (GANs)

• Encoder/Decoder Networks

• Correlation
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100 Best Companies to Work For
— Fortune

Most Innovative Companies
— Fast Company

World’s Most Admired Companies
— Fortune

50 Smartest Companies
— MIT Tech Review

JOIN NVIDIA

YOUR LIFE’S WORK 
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Employees’ Choice: Highest Rated CEOs
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