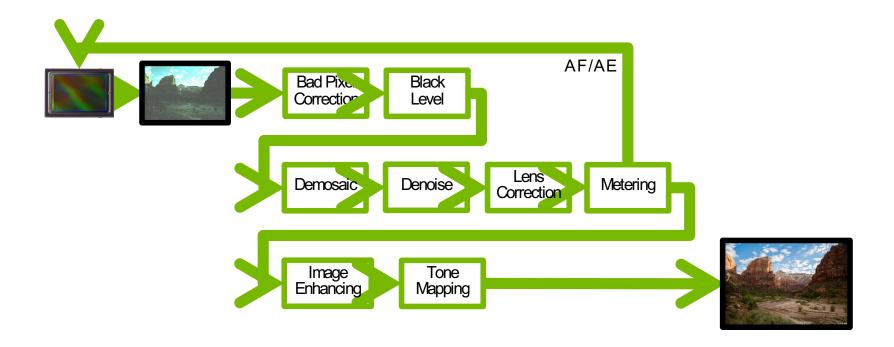


MOTIVATION

(the long path from photons to a digital image)



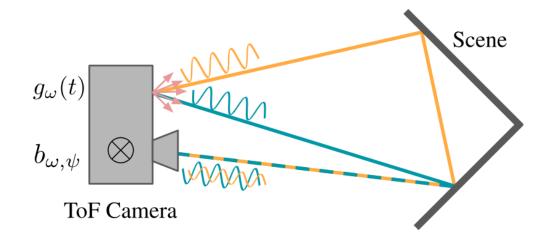
MOTIVATION

Or you might have several images

Deblurring

MOTIVATION

Non-standard imaging sensors



Time-of-flight Cameras

OUTLINE

Image Processing with Deep Learning

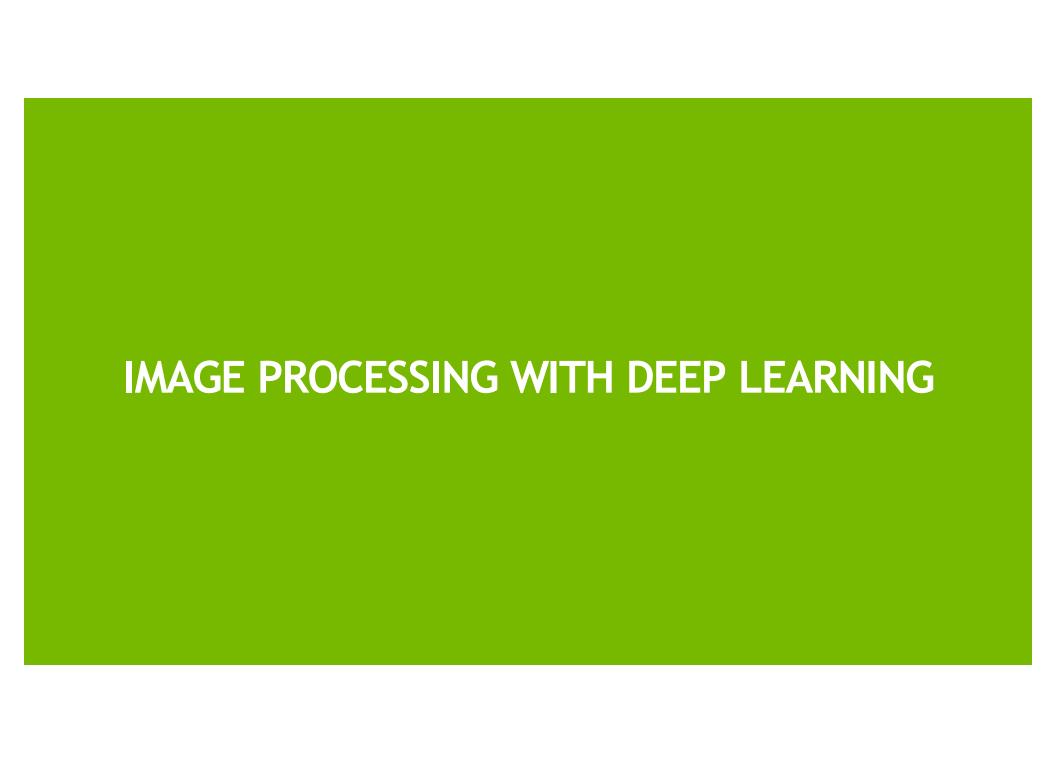
- Denoising
- Demosaicking
- Loss functions for Image Processing

Multiple Images

- DL for Stereo
- DL for Optical Flow
- DL for Deblurring

DL for Other Sensors

- Event-based
- Time-of-Flight



Several types of noise involved in the image formation:

- Photon shot noise
- Dark current (AKA thermal noise)
- Photo-response non-uniformity
- Readout noise:
 - Reset noise (charge-to-voltage transfer)
 - White noise (during voltage amplification)
 - Quantization noise (ADC)

Before the ML era

1) Signal processing (aka Fourier, Wavelet) techniques

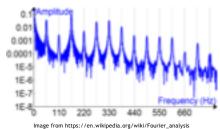


image from https://en.wikipedia.org/wiki/rourier_anatysis

2) Non-Local approaches (NLM, BM3D)

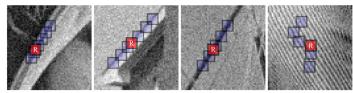


Image from http://www.cs.tut.fi/-foi/3D-DFT/BM3DDEN_article.pdf

3) Fixed (DCT, Fourier, Wavelet) vs. Learned dictionaries External dictionaries

Internal dictionaries

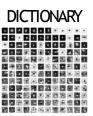


Image from https://arxiv.org/pdf/1304.3573.pdf

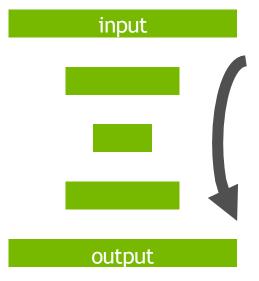
At the beginning of the ML era

Auto-Encoder (AE): learn x = f(x) function

Need to avoid the trivial solution f = I:

- **shrink space** (compressed representation)
- force sparsity

Denoising AE: input is corrupted by noise, x = f(x + n)



Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion", 2010.

At the beginning of the ML era (another stacked denoising AE)

A stacked denoised AE for denoising and inpainting

Impose **sparse** representation (an additional term in the cost function)

Junyuan Xie, Linli Xu, Enhong Chen, Image Denoising and Inpainting with

Deep Neural Networks, NIPS 2012

Image from http://staff.ustc.edu.cn/-linlixu/papers/nips12.p

At the beginning of the ML era

"A plain multilayer perceptron (MLP) applied to image patches" (the simplest architecture ever ©)

Can be trained on a **single or multiple noise levels** (assuming white Gaussian noise)

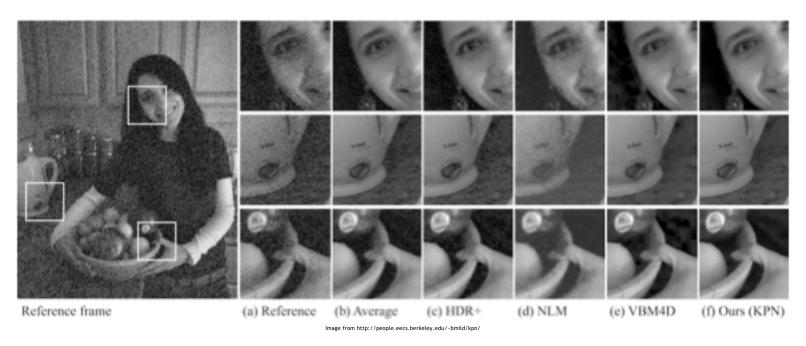
Image quality comparable with SOA BM3D (@ 0.1% of the engineering effort ©)

A large training dataset is required

Can be applied to other kinds of noises (the DNN learns both processing filters and basis to represent the image)

H. C. Burger, C. J. Schuler and S. Harmeling, "Image denoising: Can plain neural networks compete with BM3D?," IEEE Conference on Computer Vision and Pattern Recognition, 2012

Kernel Predicting Network (KPN) (1)



Mildenhall, Ben et al. "Burst Denoising with Kernel Prediction Networks." CoRRabs/1712.02327 (2017)

Kernel Predicting Network (KPN) (2)

Aim: "produce a single clean image from a noisy burst of N images captured by a handheld camera"

Synthetize the dataset with global / local shift (from real images)

KPN: our architecture "generates a stack of perpixel filter kernels that jointly aligns, averages, and denoises a burst to produce a clean version of the reference frame".

Cost function including an **alignment terms**, vanishing during training.

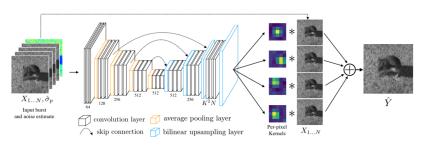


Image from https://arxiv.org/pdf/1712.02327.pdf

Mildenhall, Ben et al. "Burst Denoising with Kernel Prediction Networks." *CoRR*abs/1712.02327 (2017)

Noise to noise (no need for clean data?) (1)

Figure 3. In case of text removal the mean $(L_2 \text{ loss})$ is not the correct answer but median (L_1) is.

Figure 4. In case of random-valued impulse noise the mode (L_0) produces unbiased results, unlike mean (L_2) or median (L_1) .

Image from https://arxiv.org/pdf/1803.04189.pdf

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, Timo Aila, "Noise2Noise: Learning Image Restoration without Clean Data", ICML 2018.

Noise to noise (no need for clean data?) (2)

Desired output = noisy image

Use the **proper cost function** (e.g. L2 for Gaussian noise), s.t. the expected value of the desired output is the ground truth

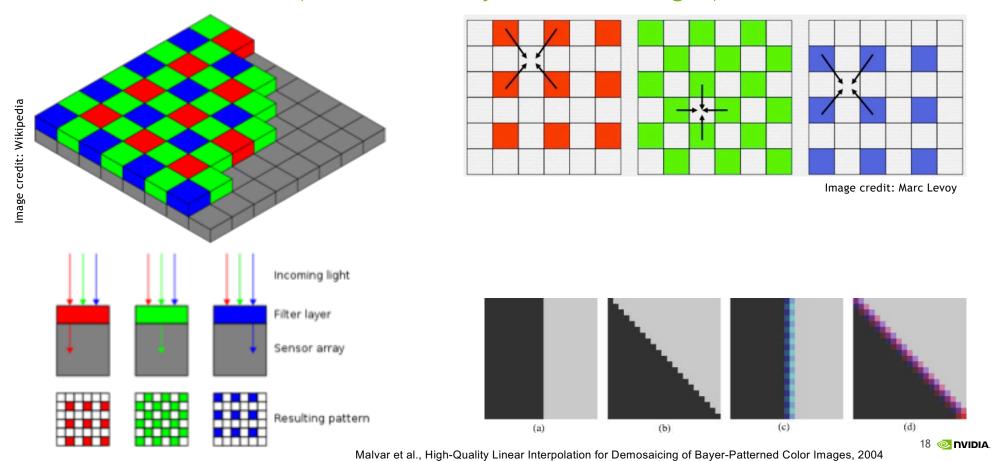
Et voilà! Converge time and image quality comparable to those achieved with clean targets.

Noisy desired output

Ground truth

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, Timo Aila, "Noise2Noise: Learning Image Restoration without Clean Data", ICML 2018.

(from RGGB Bayer to RBG images)



ML for demosaicing (1)

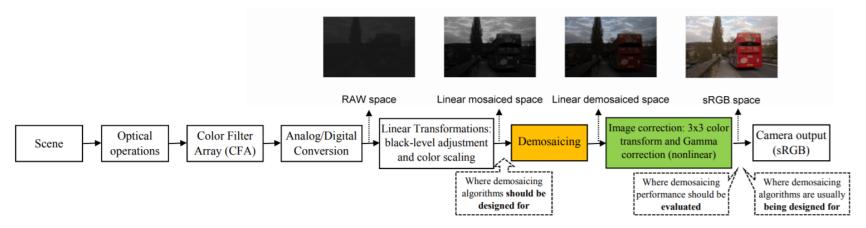


Fig. 1: A simplified camera pipeline. Many academic demosaicing algorithms work on fully developed sRGB images, masked by a CFA pattern. Instead, a practical method must use raw linear-space images as its input (orange block), since the 3x3 color transform to follow (green block) requires all missing measurements to have been filled in. Nonetheless, one should aim at *optimizing* the quality of the output in sRGB space, where images are fully developed and ready to be viewed by a human.

mage https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/khashabi2014demosaicing.pdf

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary, Andrew W. Fitzgibbon, "Joint Demosaicing and Denoising via Learned Non-parametric Random Fields", 2013.

ML for demosaicing (2)

"... two challenges to overcome by a demosaicing method: first, it needs to model and respect the statistics of natural images in order to reconstruct natural looking images; second, it needs to be able to perform well in the presence of noise."

Introduce a large dataset for learning demosaicking and denoising

PSRN or **SSIM** can be optimized (more on this later!)

Overcome SOA, with less engineering effort

End-to-end camera pipeline training

Train Regression Tree Fields (ML, not DL)

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary, Andrew W. Fitzgibbon, "Joint Demosaicing and Denoising via Learned Non-parametric Random Fields", 2013.

Patch selection improves results (1)

Figure 1: We propose a data-driven approach for jointly solving denoising and demosaicking. By carefully designing a dataset made of rare but challenging image features, we train a neural network that outperforms both the state-of-the-art and commercial solutions on demosaicking alone (group of images on the left, insets show error maps), and on joint denoising-demosaicking (on the right, insets show close-ups). The benefit of our method is most noticeable on difficult image structures that lead to moiré or zippering of the edges.

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic.pdf

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand, "Deep joint demosaicking and denoising", ACM Trans. Graph., 2016

Patch selection improves results (2)

Joint demosaicking and denoising

"To create a better training set, we present metrics to identify difficult patches and techniques for mining community photographs for such patches."

Train (all data), find difficult patches, re-train (weighted loss function).

Convolutional architecture with additional input for the noise level and skip connections.

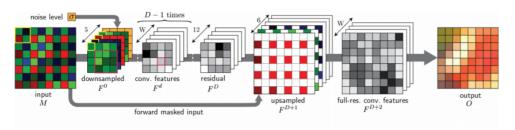


Figure 2: Our proposed architecture. The first layer of the network packs 2×2 blocks in the Bayer image into a 4D vector to restore translation invariance and speed up the processing. We augment each vector with the noise parameter σ to form 5D vectors. Then, a series of convolutional layers filter the image to interpolate the missing color values. We finally unpack the 12 color samples back to the original pixel grid and concatenate a masked copy of the input mosaick. We perform a last group of convolutions at full resolution this time to produce the final features. We linearly combine them to produce the demosaicked output.

Image from https://groups.csail.mit.edu/graphics/demosaicnet/data/demosaic.pdf

Using GANs

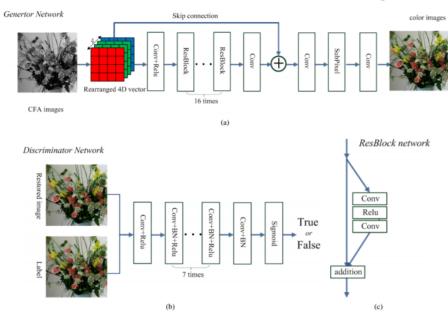


Fig. 2: The architecture of our Generative adversarial networks for joint demosaicing and denoise. The top is the generator network structure. The lower left corner is the discriminator network structure. The bottom right is the structure of the residual block

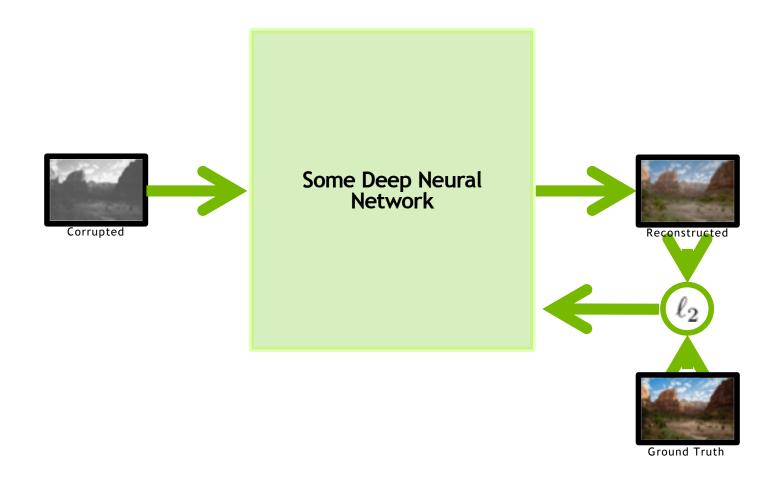
G D Fake/Real quality assurance

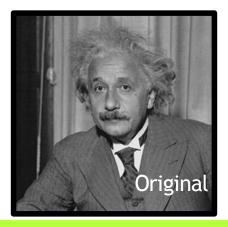
Fig. 1: Introducing GAN as a strategy of quality assurance in JDD.

Images from https://arxiv.org/pdf/1802.04723.pdf

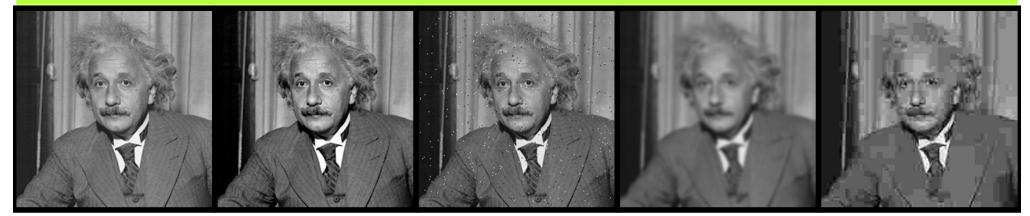
Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, "Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network", 2018.

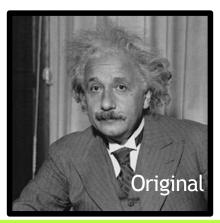
LOSS FUNCTIONS FOR IMAGE PROCESSING

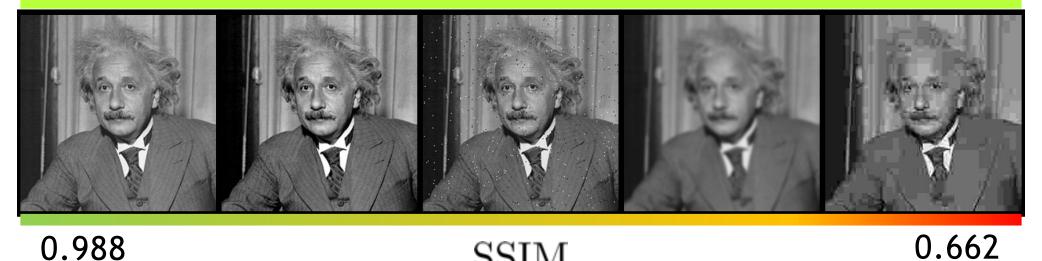




 ℓ_2







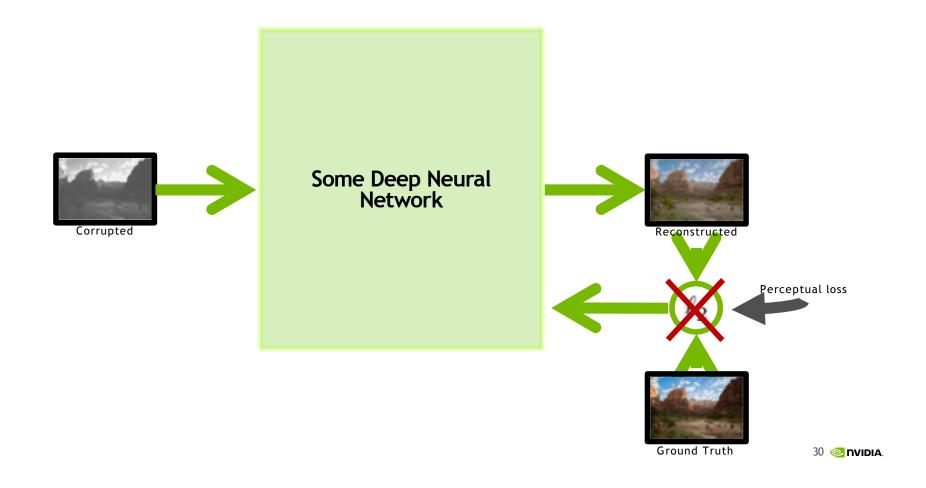
0.988 SSIM

28 **NVIDIA**.

$$\ell_2(p) = \sqrt{I_1^2(p) - I_2^2(p)}$$

$$SSIM(I_1, I_2) = l(I_1, I_2) \cdot c(I_1, I_2) \cdot s(I_1, I_2)$$

LOSS FUNCTIONS FOR IMAGE PROCESSING



$$\ell_1(p) = |I_1(p) - I_2(p)|$$

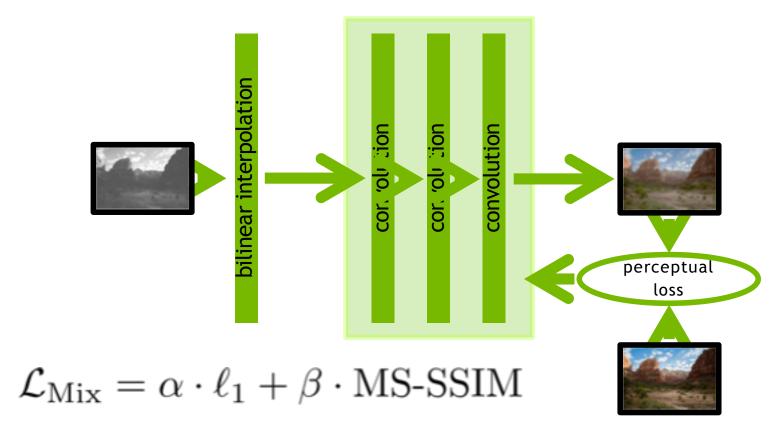
$$\ell_2(p) = \sqrt{I_1^2(p) - I_2^2(p)}$$

$$SSIM(I_1, I_2) = l(I_1, I_2) \cdot c(I_1, I_2) \cdot s(I_1, I_2)$$

 $MS-SSIM(I_1, I_2) = Multiscale(SSIM(I_1, I_2))$

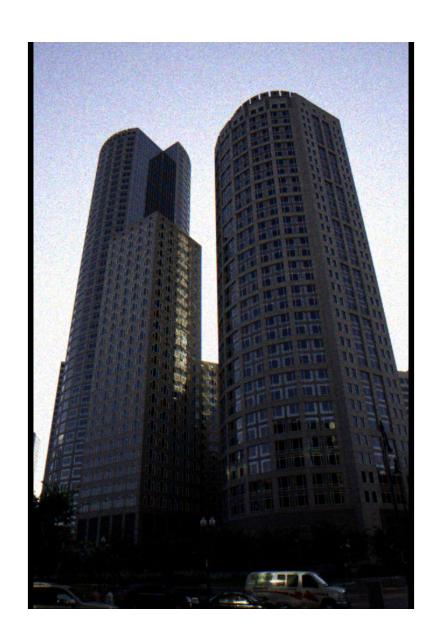
JOINT DEMOSAICKING AND DENOISING

Network architecture

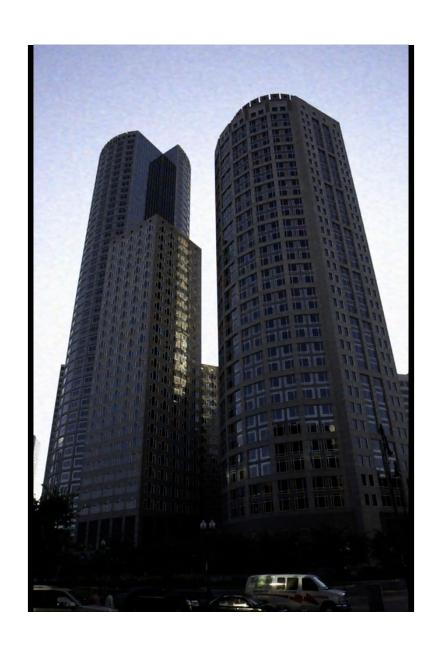


Zhao et al., "Loss Functions for Image Restoration With Neural Networks," IEEE TIP, 2017

Ground truth

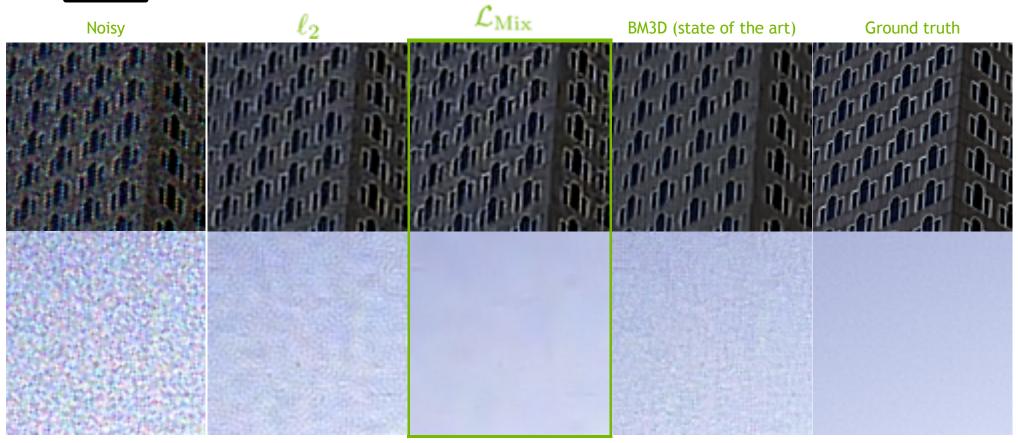


Noisy



RESULTS

Visual comparison (+ unsharp masking)



RESULTS

Why mixing MS-SSIM and ℓ_1 ?

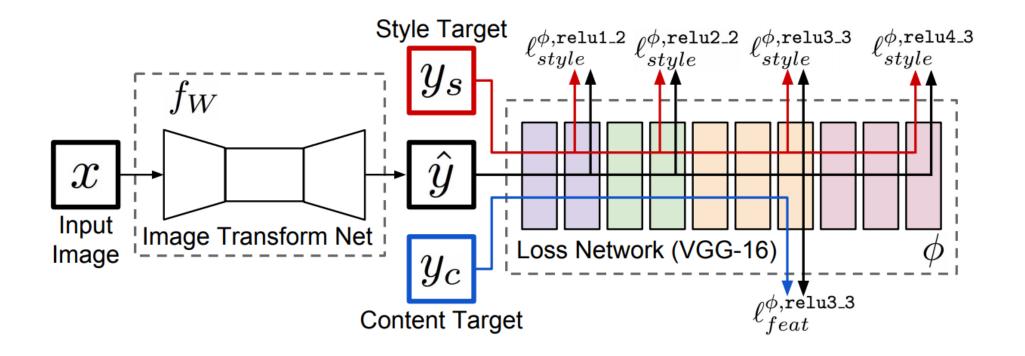
DO WE NEED HANDCRAFTED LOSSES?

GATYS LOSS

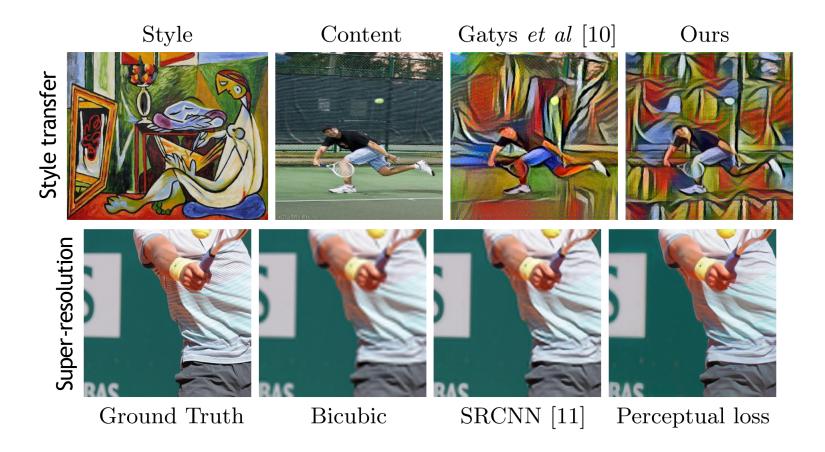
$$\mathcal{L}_{content}(l) \propto \sum_{ij} \left(F_{ij}^l - P_{ij}^l \right)^2$$

$$\mathcal{L}_{style}(l) \propto \sum_{ij} \left(G_{ij}^l - A_{ij}^l \right)^2$$

PERCEPTUAL LOSS



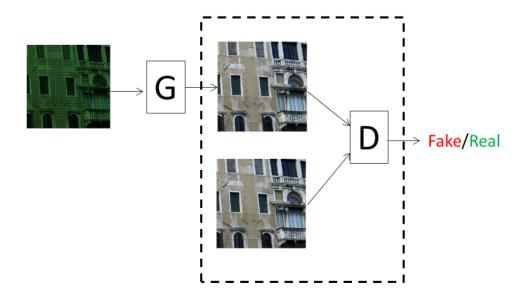
PERCEPTUAL LOSS



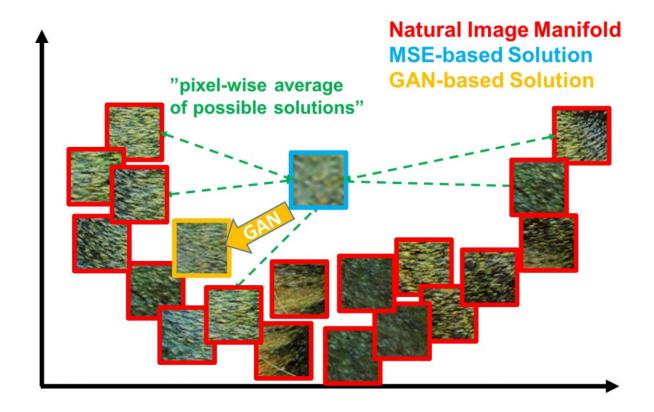
FEATURES VS HANDCRAFTED METRICS

Zhang et al., "The Unreasonable Effectiveness of Deep Features as a Perceptual Metric," IEEE CVPR 2018

GENERATIVE ADVERSARIAL NETWORKS



GENERATIVE ADVERSARIAL NETWORKS



DEMOSAICKING

Using GANs

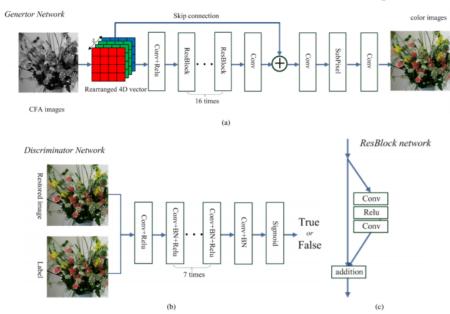


Fig. 2: The architecture of our Generative adversarial networks for joint demosaicing and denoise. The top is the generator network structure. The lower left corner is the discriminator network structure. The bottom right is the structure of the residual block

G D Fake/Real quality assurance

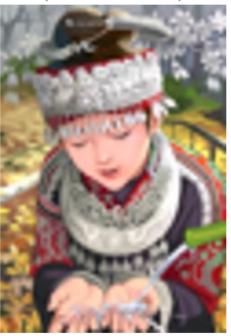
Fig. 1: Introducing GAN as a strategy of quality assurance in JDD.

Images from https://arxiv.org/pdf/1802.04723.pdf

Weisheng Dong, Ming Yuan, Xin Li, Guangming Shi, "Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network", 2018.

SUPER-RESOLUTION WITH GANS

bicubic (21.59dB/0.6423)

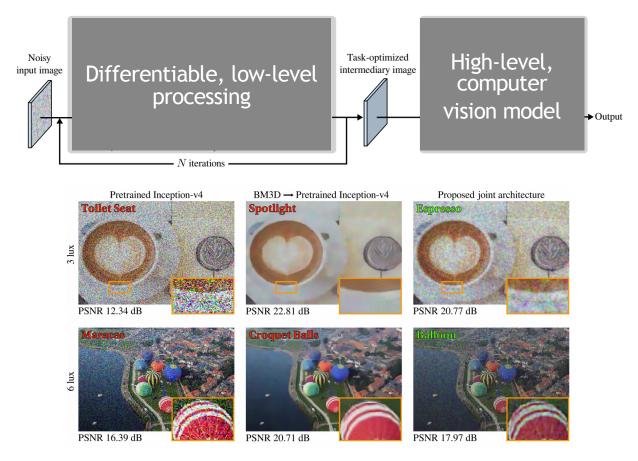


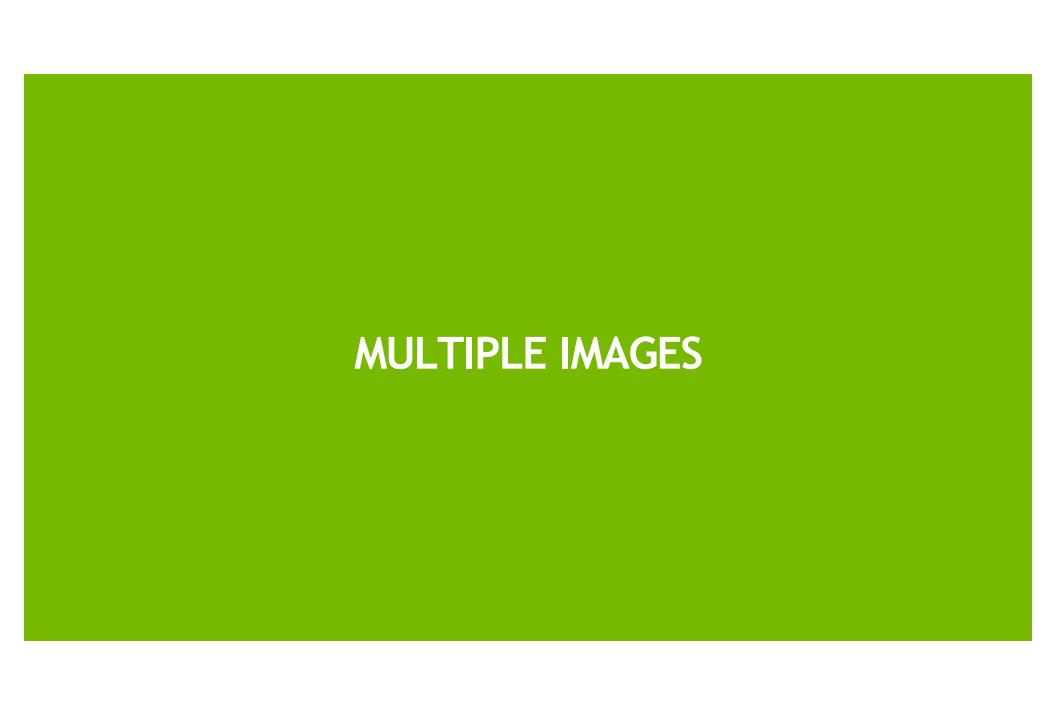
SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

TASK-SPECIFIC PROCESSING





DL FOR STEREO

Computing disparity maps using 2D convolutions

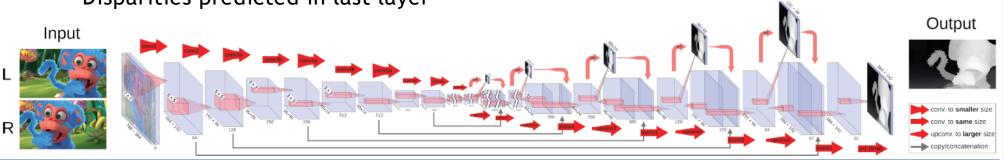
Use 2D convolutions:

- Features extracted from images
- Features are cross-correlated
- Hourglass network with skip connections

Disparities predicted in last layer

Example methods:

- DispNet [Mayer et al. 2015]
- Cascade Residual Learning (CRL) [Pang et al. 2017]



[from https://www.stidesnare.net/yunuang/optic-flow-estimation-with-deep-learning]

DL FOR STEREO

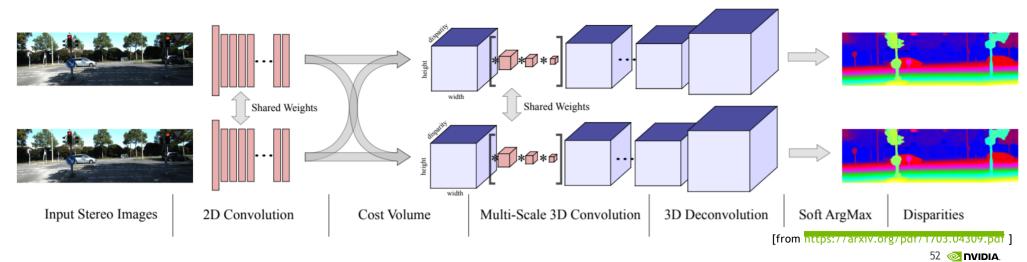
Computing disparity maps using 3D convolutions

Use 3D convolutions:

- Better results
- More computation (slower)

Example methods:

- Geometry and Context (GC-Net) [Kendall et al. 2017]
- Pyramid Stereo Matching (PSM-Net) [Chang and Chen 2018]



DL FOR OPTICAL FLOW

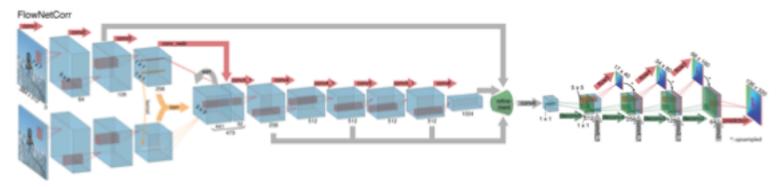
Computing optical flow using 2D convolutions

Use 2D convolutions:

- Features extracted from images
- Features are cross-correlated
- Hourglass network with skip connections
- Disparities predicted in last layer

Example methods:

- FlowNet / FlowNet2
 [Fischer et al. 2015] [Ilg et al. 2017]
- PWC-Net (multiscale/warping) [Sun et al. 2018]

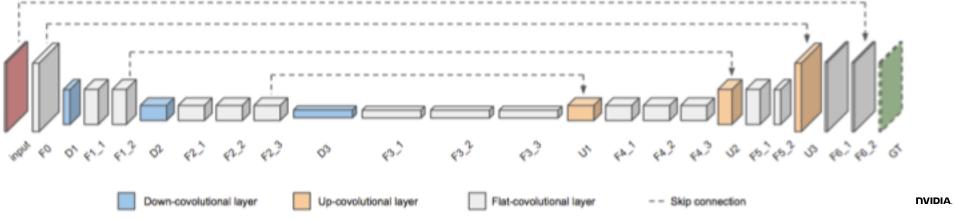


DEEP VIDEO DEBLURRING

[Su, et al., CVPR 2017]

DNNs learn to handle deblurring challenges implicitly

- Unknown spatially-varying blur kernel
- Frame-to-frame mis-alignment
- Simple U-Net with skip connections + L2-loss



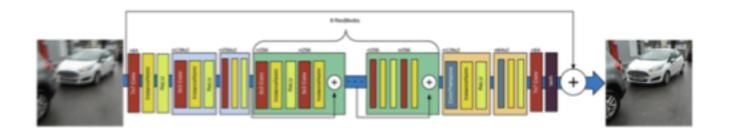
DEBLURGAN

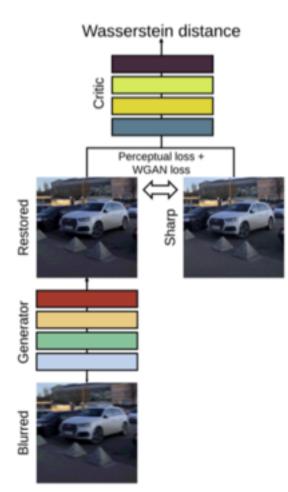
[Kupyn, et al., CVPR 2018]

Simple ResNet architecture

More perceptually-motivated loss function

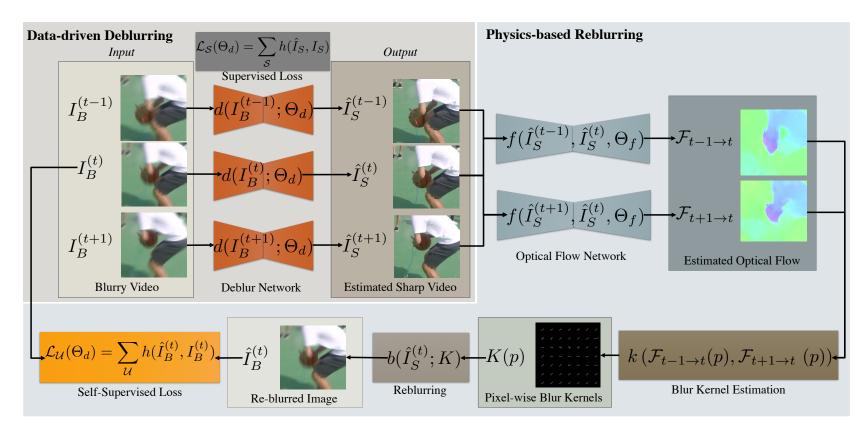
$$\mathcal{L} = \underbrace{\mathcal{L}_{GAN}}_{adv~loss} + \underbrace{\lambda \cdot \mathcal{L}_{X}}_{content~loss}$$





REBLUR2DEBLUR

[Chen, et al., ICCP 2018]



Input

Ground Truth

Deep Video Deblurring

DeblurGAN

Reblur2Deblur

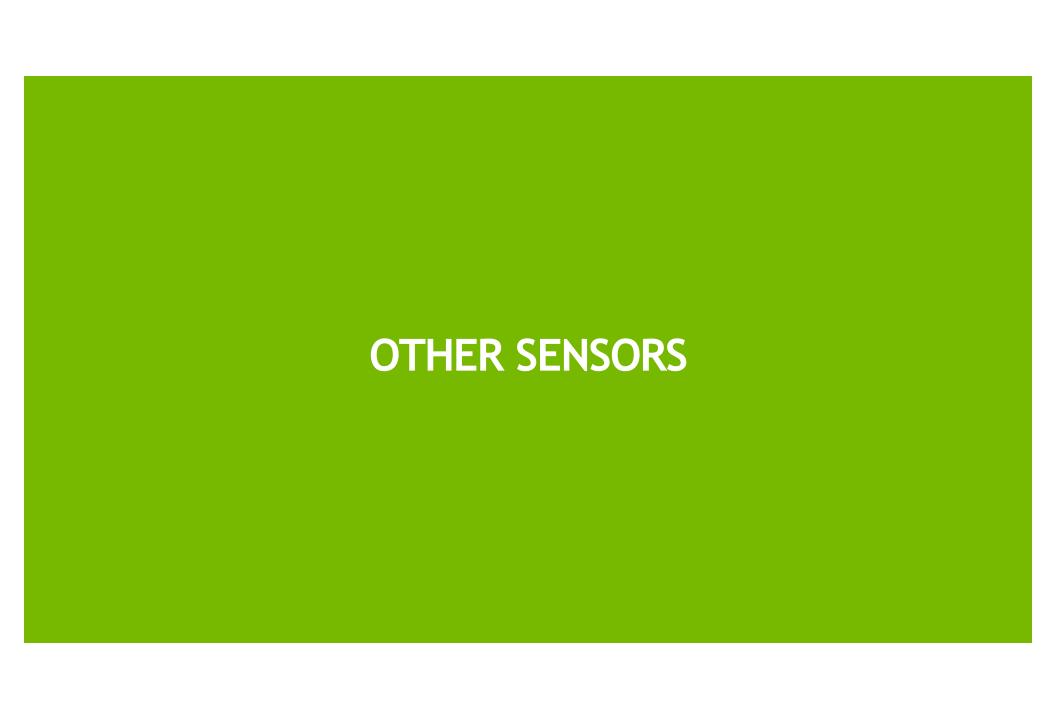
Input

Ground Truth

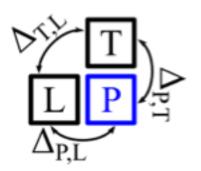
Deep Video Deblurring

DeblurGAN

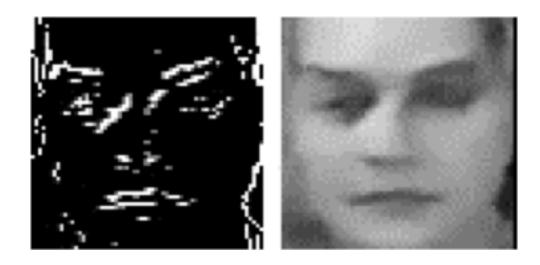
Reblur2Deblur



BINARY GRADIENT CAMERAS

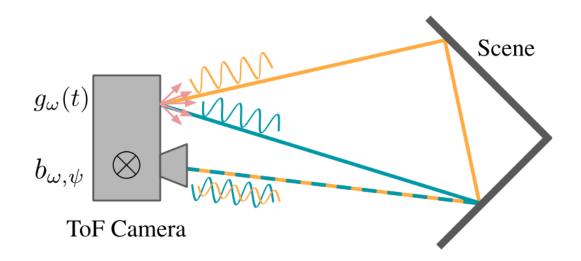


BINARY GRADIENT CAMERAS

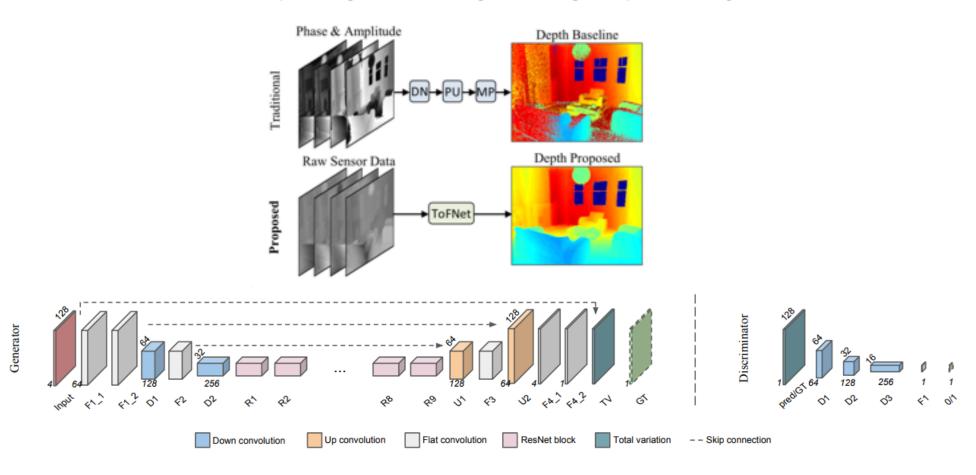


Jayasuriya et al., "Reconstructing Intensity Images from Binary Spatial Gradient Cameras," IEEE CVPRW, '17⁶⁷

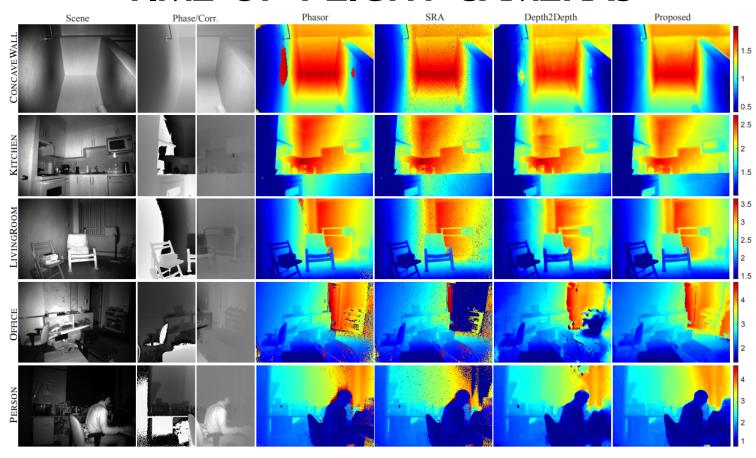
TIME-OF-FLIGHT CAMERAS



TIME-OF-FLIGHT CAMERAS



TIME-OF-FLIGHT CAMERAS



CONCLUSION

Image Processing with Deep Learning

- Single Image
- Multiple Images
- Other Sensors

Recurring Themes

- Loss Functions (GANs)
- Encoder/Decoder Networks
- Correlation

YOUR LIFE'S WORK STARTS HERE

JOIN NVIDIA

100 Best Companies to Work For

- Fortune

Most Innovative Companies

- Fast Company

World's Most Admired Companies

Fortune

Employees' Choice: Highest Rated CEOs

Glassdoor

50 Smartest Companies

- MIT Tech Review

INTERESTED? <u>Email: aijobs@nvidia.com</u>

