Course Schedule

13	8:30 – 13:50	Course Introduction Ramesh Raskar (MIT)
13	8:50 – 15:00	Existing Sensors and Their Guy Satat (MIT), Achuta K
15	5:00 - 15:10	Break
15	5:10 – 15:50	Emerging 3D Sensors <i>Achuta Kadambi (UCLA)</i>
15	5:50 – 16:30	Imaging in Bad Weather <i>Guy Satat (MIT)</i>
16	5:30 – 16:40	Break
16	5:40 – 17:20	Deep Learning-based Con <i>Jan Kautz (NVIDIA)</i>
17	7:20 – 17:30	Conclusion and Open Pro

http://imagingav.media.mit.edu

r Limits Kadambi (UCLA)

mputational Imaging

blems

Computational Cameras: Redefining the Image

Achuta Kadambi (University of California, Los Angeles)

Revolutions in Imaging

750 BC (The First Lens) Ancient Assyria

Revolutions in Imaging

750 BC (The First Lens) Ancient Assyria **1816 AD** (The First Photo) Joseph Niepce

"Revolutions" in Imaging

750 BC (The First Lens) Ancient Assyria

1816 AD (The First Photo) Joseph Niepce

Is this really a revolution? (Modern Photograph)

Ordinary Cameras are Boring

Capture of 2D Phenomena

Slide inspired by L. Waller

Computational Imaging Revolution

Generalized Hardware

Physics, Hardware, and Computation

Physics, Hardware, and Computation

3D Cameras are Ready to Disrupt

3D cameras capture the (x,y,z) position of light reflections

Helping cars navigate

Guiding medical robots

Scanning and printing objects

Microsoft Kinect v2

 $\langle X \rangle$

Multistripe Laser Scan

NextEngine 3D \$3000 USD Raster

Multistripe Laser Scan NextEngine 3D

NextEngine 3D \$3000 USD Raster

Bring in Physics

Hardware

Polarization of Light

Polarization of Light

Polarization of Light

\$30 Polarizing Filter

Photos at Different Angles

Horizontal Filter Orientation

Vertical Filter Orientation

Colors map to 8-bit grayscale

Horizontal Filter Orientation

Vertical Filter Orientation

Colors map to 8-bit grayscale

Difference Image

Horizontal Filter Orientation

Vertical Filter Orientation

We need to add computation!

Colors map to 8-bit grayscale

Difference Image (Tonemapped to 8-bit)

Final Ingredient: Bring in Computation

Hardware

Graphic inspired by L. Waller

"Polarized 3D"

Using Polarization

[Kadambi et al. IJCV 2017]

Computational Imaging

"Polarized 3D"

Using Polarization

[Kadambi et al. IJCV 2017]

"Polarized 3D"

Using Polarization

[Kadambi et al. ICCV 2015]

 \vec{n}

 \mathcal{N}

Integrating normals to obtain 3D shape

 \vec{n}

 \mathcal{N}

Integrating normals to obtain 3D shape

Integrating normals to obtain 3D shape

Old Principle [Fresnel 1819]

$$r_{\perp} = \frac{\cos \theta_{i} - n \cos \theta_{t}}{\cos \theta_{i} + n \cos \theta_{t}}$$
$$r_{\square} = \frac{\cos \theta_{i} - n \cos \theta_{t}}{\cos \theta_{i} - n \cos \theta_{t}}$$

SfP crux: Solve for theta

Old Principle [Fresnel 1819]

$$r_{\perp} = \frac{\cos \theta_{i} - n \cos \theta_{t}}{\cos \theta_{i} + n \cos \theta_{t}}$$
$$r_{\Box} = \frac{\cos \theta_{i} - n \cos \theta_{t}}{\cos \theta_{i} - n \cos \theta_{t}}$$

SfP crux: Solve for theta

Need to know refractive index

Image Formation Model

Goal: Solve for azimuth phase

Image Formation Model

$$\int_{1} = \frac{I_{\max} + I_{\min}}{2} + \frac{I_{\max} - I_{\min}}{2} \cos\left(2\left(\phi_{\text{pol}} - \phi\right)\right)$$

spose $\exists \phi \text{ and } \phi' = \phi + \pi$

Goal: Solve for azimuth phase

Image Formation Model

$$= \frac{I_{\max} + I_{\min}}{2} + \frac{I_{\max} - I_{\min}}{2} \cos\left(2\left(\phi_{\text{pol}} - \phi\right)\right)$$

pose $\exists \phi \text{ and } \phi' = \phi + \pi$

Goal: Solve for azimuth phase

Azimuthal Ambiguity problem with 2^{P} solutions

TLDR: EM analysis alone is underconstrained

1. Refractive Index Needs to be Known

2. \pi Ambiguity in Surface Normal

Challenges have impacted previous approaches: [Miyazaki ICCV 03] [Atkinson IEEE TIP 06]

1

EM analysis alone is underconstrained

Refractive Index Needs to be Known 1.

\pi Ambiguity in Surface Normal 2.

Low SNR for some geometries 3.

Surface conforms to existing Fresnel models 4.

Challenges have impacted previous approaches: [Miyazaki ICCV 03] [Atkinson IEEE TIP 06]

State of the art using **EM** analysis

Are we barking up the right tree?

Emailing Sr. Researchers: "Why did you stop working on this problem?" (Rephrased)

Exemplary Response: "The polarization signal is subtle and too many physical constants unknown"

- A Senior Professor in Computer Vision

1D FFT

1D FFT

 $\omega_{\rm LPF}$

1D FFT

 $\omega_{\rm LPF}$

Goal: Combine low-frequency and highfrequency.

Understanding our Input Data

Coarse Depth Estimate

> Obtained from Any Depth Estimator

Estimated from Fresnel Equations

Gradient Domain Correction (Azimuth Only)

Gradient Domain Correction (Azimuth Only)

Integrate the Surface (Naïve)

Regularized Integrator

Naïve Regularizer Strategy: Penalize deviations in the surface normal integration with the coarse depth map

Regularized Integrator

[Kadambi et al. IJCV 2017]

Coarse 3D Shape

Physics-based Regularizer

Nuanced Goals

Minimize O(n^2) operations FFT(LPF(estimate)) = FFT(Depth)

> Addresses Refractive Index Problem

Integration Algorithm Posed as Graph Problem

Spanning Tree Integration

Kruskal's Algorithm: $O(E \log E)$

$\begin{vmatrix} \lambda \mathbf{M} \odot \mathbf{I} \\ \nabla_S^2 \end{vmatrix} \operatorname{VEC} \left(\widehat{\mathbf{D}} \right) = \begin{vmatrix} \lambda \operatorname{VEC} \left(\mathbf{M} \odot \mathbf{D} \right) \\ \nabla_S^T \left(\mathbf{N}^{\operatorname{corr}} \right) \end{vmatrix}$

Gradients can be flagged if the polarization signal is too small (e.g. DOLP)

Kinect3 Polar Photos

Kinect3 Polar Photos

Fresnel

Kinect3 Polar Photos

Fresnel Grad. Corr.

Kinect **3 Polar Photos**

Fresnel

Grad. Corr.

Graph Integ.

Alternate Approaches

Polarization Approach

Physics, Hardware, and Computation

Physics, Hardware, and Computation

Provable Guarantees on Light Transport

Proposition 1 Stochastic ambiguities in the azimuthal angle are avoided when polarized reflections are either diffuse or specular dominant.

Proposition 2 Assuming the conditions of Proposition 1 hold, perturbations in zenith angle due to mixed reflections can be corrected by applying the rotation operator $\widehat{\mathcal{R}}$, as described in Eq. 10.

(c) Mixed Reflection

Surface Assumption

(c) Mixed Reflection

"Mixed Fresnel" [Kadambi et al. 2017]

$$\frac{\left(n-\frac{1}{n}\right)^2 \sin^2\theta}{\left(\frac{1}{n}\right)^2 \sin^2\theta + 4\cos\theta\sqrt{n^2 - \sin^2\theta}}$$

Contribution:

analyze a mixture model

One of the most challenging objects to scan

Paints of different colors

Uncontrolled Ambient light from window

Kinect

Shading [Wu 14]

Polarized 3D

Passive Polarimetric Imaging

Varying Reflection Class

Passive Polarimetric Imaging

Varying Reflection Class

Shading [Wu 14] Polarized 3D

Passive Polarimetric Imaging

Shading [Wu 14] Polarized 3D

Many lingering challenges!

Note: we have only scratched surface of

Birefringence, circular polarization, etc.

learning
Future pathways to probe

Fine structures for Bioengineering

Smartphone 3D Vision

Long-range 3D sensing

Physics, Hardware, and Computation

Physics, Hardware, and Computation

NING

MIT Tech Review

Separating Multiple Bounces of Light

This pixel measures both blue and red paths. Can we split the light?

III-posed Problem

$I = I_A + I_B$

So the problem needs to be constrained

Previous Work: Smoothness in Space

Nayar, Krishnan, Grossberg, Raskar SIGGRAPH 2006

Smoothness a Limiting Assumption

"If a laser beam hits a water drop... the lidar can think it's an object and slam on the brakes"

- Director of CMU autonomous driving lab

Multipath Interference for CW emitters

Tree

Generalizing the Camera to Systems Thinking

Overview of Time of Flight

$$d = vt \qquad v = 3 * 10^8 m/s$$

So, we need a camera to measure time delay.

Example: Microsoft Kinect (ver 2)

Reference Clock

Strobing Pattern

Recall: Strobing Pattern is MHz (nanosecond periods)

Interference

Measure one Phase that is in between (mod 2 \pi)

Recall: Strobing Pattern is MHz (nanosecond periods)

Each Pixel Becomes a Linear Time-invariant System

Spike location due to optical path length

Probing Kernel

Temporal Response

Measured Signal

Each Pixel Becomes a Linear Time-invariant System

Multipath Interference

Probing Kernel

Temporal Response

Multipath Interference

Problem of **unicity**: sum of two sines at same frequency but different phase is a single sine wave at a mixed phase

Multipath Interference

This is a cartoon

Measured Signal

What AM modulation is optimal?

Imaging device should be "spread spectrum" \rightarrow term from telecommunications

Prior-based Orthogonal Matching Pursuit

We explore the matching pursuit class of problems which approximate the original IO program:

We make two modifications here:

1.Non-negativity constraints (Bruckstein, Elad, and Zibulevsky, ISCCSP 2008). 2.Proximity constraints

Nonnegativity

a)Consider only positive projections when searching for the next atom.

b)When updating the residual use a solver to impose positivity on the coefficients.

$$\left\| \mathbf{H}\vec{x} \right\|_{2}^{2} + \lambda \left\| \vec{x} \right\|_{0}^{2}$$

Theory > Instantiation

Nanophotography: AM modulation with customizable signal encoding

Imaging at 8 Billion Effective FPS

Imaging at 8 Billion Effective FPS

Nanocamera

Imaging at 8 Billion Effective FPS

Nanocamera

Captured Data

Note non-smooth multipath (e.g. Specularities)

[Kadambi et al. SIGGRAPHA13]

Tool Application: 3D Imaging in Multipath Environments

Contribution: Multi-bounce 3D imaging [Kadambi et al. SIGGRAPH Asia 2013]

Transient imaging tackling Edge Cases in Imaging

3D Shape of Translucent Objects

Seeing around Corners

Physics, Hardware, and Computation

Physics, Hardware, and Computation

Naïve Approach

Sense of "Optimal Codes" in context of SNR and power bandwidth

Kadambi et al. IEEE ICCP 2014

Kadambi et al. IEEE ICCP 2014

Scattering is not always discrete

Exploit Space-time Diversity

Intuition

Kadambi et al. IEEE CVPR 2016

A Guarantee on Resolvability of Light Paths

Proposition [Kadambi et al. CVPR16]

Two light-paths of equal amplitude can be separated if the difference in optical path length is greater than:

$$\Delta z > 0.6 \frac{c}{\Delta f_M}$$

Figure 3. We show that the noiseless bound derived in *Proposition* 1 is valid in typical shot noise limited scenarios.

* Valid in shot noise limited cases

New "MicroLIDAR" Project for Descattering

Study optical wave and electronic modulation jointly

CMOS Camera [Kadambi et al. CVPR16]

Fiberoptic MicroLIDAR [Kadambi et al. IEEE17]

Textbook: "Principles of Time-resolved Imaging" (Free in Fall'18)

Health Applications

Canon Document Scanner into an X-ray imager?

Kadambi et al. 2018

The future of image processing is 7D?

Polarization for 3D

7D Image Processing

Space-Transient Imaging

Academic Questions:

How do multiple bounces relate to polarization? How can we overcome **diffraction**? How does **scatter** relate to transience? Provable Guarantees of Imaging Correctness?

Driving through Fog: Separate ballistic and scattered photons based on minute axial path delays or polarimetric signal

Multi-scatter models

Single-scatter models

Cast scattering in plenoptic context

What are other possible mountains?

Future Direction: Physics-based machine learning

Goal: How can we unite physics and learning-based ideas?

Challenges to overcome:

Need specialized datasets Need specialized CG rendering Need to rethink algorithms Need to justify approach

Image-based Machine Learning [Laina16]

Trained on 3D Database from NYU [Silberman12]

Future Direction: Proving "correctness" of an imaging approach

New problems, new bounds – novel problem statements require new, provable bounds

Towards optimality – can we prove analytically that a computational camera is the best possible solution?

New systems, new simulators – e.g. puts pressure on SIGGRAPH and CVPR to evolve.

Demand Pressure for New Cameras

Drone Visual Systems

Autonomous Driving

Evolution of Nanoscopes

Mobile Photography

Image Deeper through Tissue

Sound + Light

Course Schedule

13:30 – 13:50	Course Introduction Ramesh Raskar (MIT)
13:50 – 15:00	Existing Sensors and Thei Guy Satat (MIT), Achuta k
15:00 – 15:10	Break
15:10 – 15:50	Emerging 3D Sensors <i>Achuta Kadambi (UCLA)</i>
15:50 – 16:30	Imaging in Bad Weather <i>Guy Satat (MIT)</i>
16:30 – 16:40	Break
16:40 – 17:20	Deep Learning-based Con <i>Jan Kautz (NVIDIA)</i>
17:20 – 17:30	Conclusion and Open Pro

http://imagingav.media.mit.edu

r Limits Kadambi (UCLA)

mputational Imaging

blems

