
Course Schedule http://imagingav.media.mit.edu

13:30 – 13:50 Course Introduction
Ramesh Raskar (MIT) 

13:50 – 15:00 Existing Sensors and Their Limits
Guy Satat (MIT), Achuta Kadambi (UCLA)

15:00 – 15:10 Break

15:10 – 15:50 Emerging 3D Sensors
Achuta Kadambi (UCLA)

15:50 – 16:30 Imaging in Bad Weather
Guy Satat (MIT)

16:30 – 16:40 Break

16:40 – 17:20 Deep Learning-based Computational Imaging
Jan Kautz (NVIDIA)

17:20 – 17:30 Conclusion and Open Problems



Computational Cameras: Redefining the Image
Achuta Kadambi (University of California, Los Angeles)
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“Revolutions” in Imaging

750 BC
(The First Lens)
Ancient Assyria

1816 AD
(The First Photo)
Joseph Niepce

Is this really a revolution?
(Modern Photograph)



Ordinary Cameras are Boring

Capture of 2D Phenomena

( , )I x y

Slide inspired by L. Waller



Computational Imaging Revolution

7D Brightness Sampling

Generalized 
Algorithms

Generalized 
Hardware

1 2, ,( , , , , )I x y tθ θ λ ρ

Generalized 
Physics



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Broad Goal: Rethink existing 
limitations of imaging



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Hot Topic: 3D Imaging



3D Cameras are Ready to Disrupt

3D cameras capture the (x,y,z) position of light reflections

Helping cars navigate Scanning and printing objectsGuiding medical robots



Microsoft Kinect v2



Microsoft Kinect v2



Multistripe Laser Scan

NextEngine 3D
$3000 USD
Raster



Multistripe Laser Scan

NextEngine 3D
$3000 USD
Raster



Bring in Physics

7D Brightness Sampling

Generalized 
Computation

Generalized 
Hardware

1 2, ,( , , , , )I x y tθ θ λ ρ

Generalized 
Physics



Polarization of Light



Polarization of Light

Plane of Polarization



Polarization of Light

Plane of Polarization Plane of Polarization



Brewster’s Angle



$30 Polarizing 
Filter

Photos at Different Angles



Horizontal Filter Orientation Vertical Filter Orientation

Colors map to 8-bit grayscale



Horizontal Filter Orientation Vertical Filter Orientation

Colors map to 8-bit grayscale

Difference Image



Difference Image
(Tonemapped to 8-bit)

Horizontal Filter Orientation Vertical Filter Orientation

Colors map to 8-bit grayscale

We need to add computation!



Final Ingredient: Bring in Computation

7D Brightness Sampling

Generalized 
Computation

Generalized 
Hardware

Graphic inspired by L. Waller

Generalized 
Physics



“Polarized 3D”

Computational Imaging
Using Polarization

[ Kadambi et al. IJCV 2017 ]



“Polarized 3D”

Computational Imaging
Using Polarization

[ Kadambi et al. IJCV 2017 ]



“Polarized 3D”

Computational Imaging
Using Polarization

[ Kadambi et al. ICCV 2015 ]



Fresnel Electromagnetic Equations



Fresnel Electromagnetic Equations

Integrating normals to 
obtain 3D shape
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Goal: Solve for zenith angle at 
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Fresnel Electromagnetic Equations

Old Principle [Fresnel 1819]
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Goal: Solve for zenith angle at 
each position



Fresnel Electromagnetic Equations

Old Principle [Fresnel 1819]
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SfP crux: Solve for theta

Need to know refractive index

Goal: Solve for zenith angle at 
each position











Image Formation Model
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Image Formation Model

( )( )max min max min
pol pol( ) cos 2

2 2
I II II φ φ φ+

+ −
= −

Suppose  and 'φ φ φ π∃ = +

Azimuthal Ambiguity problem with 2 solutionsP

Goal: Solve for 
azimuth phase



TLDR: EM analysis alone is underconstrained

1. Refractive Index Needs to be Known

2. \pi Ambiguity in Surface Normal

Challenges have impacted previous approaches: [Miyazaki ICCV 03] [Atkinson IEEE TIP 06]



EM analysis alone is underconstrained

1. Refractive Index Needs to be Known

2. \pi Ambiguity in Surface Normal

3. Low SNR for some geometries

4. Surface conforms to existing Fresnel models

Challenges have impacted previous approaches: [Miyazaki ICCV 03] [Atkinson IEEE TIP 06]

State of the art using 
EM analysis



Are we barking up the right tree?

Emailing Sr. Researchers: “Why did you stop working 
on this problem?” (Rephrased) 

Exemplary Response: “The polarization signal is 
subtle and too many physical constants unknown”

- A Senior Professor in Computer Vision



Frequency Analysis



Frequency Analysis



Frequency Analysis



Frequency Analysis



Frequency Analysis

Goal: Combine 
low-frequency 
and high-
frequency. 



Understanding our Input Data

Coarse Depth 
Estimate
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Estimated from 
Fresnel Equations

Obtained from Any 
Depth Estimator



Gradient Domain Correction (Azimuth Only)
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[ Kadambi et al. IJCV 2017 ]
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Integrate the Surface (Naïve) 

Integration 
Algorithm
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[ Kadambi et al. IJCV 2017 ]

Corrected 
Gradients
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Regularizer
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Shape

Integration 
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[ Kadambi et al. IJCV 2017 ]

Corrected 
Gradients Naïve Regularizer Strategy: Penalize 

deviations in the surface normal integration 
with the coarse depth map
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Physics-based
Regularizer
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[ Kadambi et al. IJCV 2017 ]

Corrected 
Gradients

Nuanced Goals

Minimize O(n^2) operations
FFT(LPF(estimate)) = FFT(Depth)

Addresses Refractive 
Index Problem



Integration Algorithm Posed as Graph Problem

Spanning Tree Integration

( log )O E EKruskal’s Algorithm:

Gradients can be flagged if the polarization signal is too small (e.g. DOLP)



Visual Debugging

Kinect 3 Polar Photos



Visual Debugging

Kinect 3 Polar Photos Fresnel



Visual Debugging

Kinect 3 Polar Photos Grad. Corr.Fresnel



Visual Debugging

Kinect 3 Polar Photos Grad. Corr. Graph Integ.Fresnel



Image-based Machine 
Learning [ Laina16 ]

Polarization Approach

Industry Laser ScannerShading Refinement [ Wu14 ]

Microsoft Kinect ver. 2

Trained on 3D Database from 
NYU [ Silberman12 ]

Alternate Approaches



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Application: Relight
Consumer Photos



Physics, Hardware, and Computation
Hardware

Physics Computation
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[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 
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Application: Relight
Consumer Photos



Provable Guarantees on Light Transport

[ Kadambi et al. IJCV 2017 ]



Surface Assumption

Fresnel Equations

[Fresnel 1819]

“Reversed Fresnel”
[Atkinson et al. 2006]

“Mixed Fresnel”
[Kadambi et al. 2017]

OR
Contribution: 

analyze a 
mixture model



One of the most challenging objects to scan

Uncontrolled Ambient light 
from window

Paints of different colors



Kinect



Polarized 3DShading [Wu 14]Kinect



Passive Polarimetric Imaging

Varying Reflection Class



Passive Polarimetric Imaging

Polarized 3DShading [Wu 14]Kinect

Varying Reflection Class



Passive Polarimetric Imaging

Polarized 3DShading [Wu 14]Kinect



Many lingering challenges!

(-) Requires Multiple
Images

(-) Requires Coarse
Depth

Solutions
(-) Not real-time

(3 sec/frame)

Limitations

Multipolar 
Camera

Depth Priors
from Machine 

Learning

GPU or 
physics-based 

learning

Note: we have only scratched surface of 
just linear polarization

Birefringence, circular polarization, etc.



Future pathways to probe

Fine structures for 
Bioengineering

Smartphone 3D Vision Long-range 3D sensing



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Goal: Separate Light Bounces



MIT Tech Review



Separating Multiple Bounces of Light

Camera Pixel

This pixel measures both blue and red paths. Can we split the light? 



Ill-posed Problem

So the problem needs to be constrained

A BI I I= +



Previous Work: Smoothness in Space
Let’s think in spatial frequency domain

Direct 
Illumination

Global
Illumination

Nayar, Krishnan, Grossberg, Raskar SIGGRAPH 2006



Smoothness a Limiting Assumption

Main path

Multipath Interference for CW emitters

ToF 3D Camera Raindrop

Tree

“If a laser beam hits a water drop… the lidar can think it’s an 

object and slam on the brakes” 

– Director of CMU autonomous driving lab



Generalizing the Camera to Systems Thinking

7D Brightness Sampling

Sparse 
Approximation

ToF Imaging 
Sensor

1 2, ,( , , , , )I x y tθ θ λ ρ

Measure “t”



Overview of Time of Flight

8, 3 10 m/s
2

ccz
fωπ
Φ

= ≈ ×

Example: Microsoft Kinect (ver 2)

𝑑𝑑 = 𝑣𝑣𝑣𝑣 𝑣𝑣 = 3 ∗ 108 𝑚𝑚/𝑠𝑠

So, we need a camera to 
measure time delay.  



Reference Clock

Strobing Pattern

ϕ

Recall: Strobing Pattern is MHz (nanosecond periods)



Interference

Reference Clock

Strobing Pattern

Measure one Phase that is in between (mod 2 \pi)

Estimated 

Depth

Window

Recall: Strobing Pattern is MHz (nanosecond periods)



Each Pixel Becomes a Linear Time-invariant System

Probing Kernel

Spike location due to optical path length

∗ =

Measured SignalTemporal Response

1( )t tδ −
1 0t =

Kadambi et al. ACM Trans. Graphics 2013



Each Pixel Becomes a Linear Time-invariant System

Probing Kernel

Spike location due to optical path length

∗ =

Measured SignalTemporal Response

1( )t tδ −
1 0t =

1( )t tδ −

1 2
Tt π

=

Probing Kernel

∗ =

Measured SignalTemporal Response

Kadambi et al. ACM Trans. Graphics 2013



Multipath Interference

 =
1

)(
K

k
k

t tδ
=

−∑

Probing Kernel Temporal Response

Kadambi et al. ACM Trans. Graphics 2013



Multipath Interference

 =
1

)(
K

k
k

t tδ
=

−∑

Problem of unicity: sum of two sines at same frequency but different phase is 
a single sine wave at a mixed phase

Probing Kernel Temporal Response Measured Signal

Kadambi et al. ACM Trans. Graphics 2013



Multipath Interference

 =
1

)(
K

k
k

t tδ
=

−∑

Probing Kernel Temporal Response Measured Signal

This is a cartoon Kadambi et al. ACM Trans. Graphics 2013



What AM modulation is optimal?

Imaging device should be “spread spectrum”  term from telecommunications

Kadambi et al. ACM Trans. Graphics 2013



Proximity Constraints

Prior-based Orthogonal Matching Pursuit

We explore the matching pursuit class of problems which approximate the original l0 program: 

We make two modifications here:
1.Non-negativity constraints (Bruckstein, Elad, and Zibulevsky, ISCCSP 2008). 
2.Proximity constraints

2 2

2 0
arg min

x
y x xλ− +H



  

Nonnegativity
a)Consider only positive projections when 

searching for the next atom. 
b)When updating the residual use a solver to 

impose positivity on the coefficients. 
PriorLikelihood

arg max ( | ) arg max ( | ) ( )
x x

p x y p y x p x→
 

    


( ) ( ; , )p x x µ σ∈
 



Theory Instantiation

Nanophotography: AM modulation with customizable signal encoding

Kadambi et al. ACM Trans. Graphics 2013
Imaging at 8 Billion Effective FPS



Imaging at 8 Billion Effective FPS

Nanocamera

Kadambi et al. ACM Trans. Graphics 2013



Imaging at 8 Billion Effective FPS

Nanocamera
Captured Data

Kadambi et al. ACM Trans. Graphics 2013






[ Kadambi et al. SIGGRAPHA13 ]

Note non-smooth multipath (e.g. Specularities)



Tool Application: 3D Imaging in Multipath Environments 

Contribution: Multi-bounce 3D imaging [ Kadambi et al. SIGGRAPH Asia 2013]



Transient imaging tackling Edge Cases in Imaging

Seeing around Corners

3D Shape of Translucent Objects






Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Contribution: Separate Light 
Bounces



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 
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[ ICCV’15] 

Application: Relight
Consumer Photos



Tool Application: Multi-Light Separation

Scene

A



Tool Application: Multi-Light Separation

Scene

BA

AI I=

Naïve Approach



Tool Application: Multi-Light Separation

Scene

BA

BI I=

Naïve Approach



Tool Application: Multi-Light Separation

Scene

BA

Sense of “Optimal Codes” in context of SNR
and power bandwidth



Tool Application: Multi-Light Separation

Kadambi et al. IEEE ICCP 2014
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Tool Application: Multi-Light Separation

Kadambi et al. IEEE ICCP 2014



Tool Application: Multi-Light Separation

Kadambi et al. IEEE ICCP 2014
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[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 
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Application: Relight
Consumer Photos



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Application: Relight
Consumer Photos



Scattering is not always discrete



Photo Credit: Dailymail UK

What’s behind the water?

Exploit Space-time Diversity





Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

When does the separation 
work? 



Intuition

4 meters
2 meters

4 meters
3.9 meters ?

Kadambi et al. IEEE CVPR 2016



A Guarantee on Resolvability of Light Paths

Proposition [Kadambi et al. CVPR16] 

Two light-paths of equal amplitude can be separated if the 
difference in optical path length is greater than: Mf∆

c

z∆Difference in optical path

Camera Frequency Bandwidth

Speed of Light

* Valid in shot noise limited cases

0.6
M

cz
f

∆ >
∆



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Contribution: separation 
works at high-frequencies 



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Goal: High-frequency 10 GHz 
Implementation



New “MicroLIDAR” Project for Descattering

CMOS Camera
[ Kadambi et al. CVPR16 ]

Fiberoptic MicroLIDAR
[ Kadambi et al. IEEE17 ]

Study optical wave and electronic modulation jointly

Textbook: “Principles of Time-resolved 
Imaging” (Free in Fall’18)



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Goal: High-frequency 10 GHz 
Implementation



Physics, Hardware, and Computation
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Application: Relight
Consumer Photos



Health Applications
Hardware

Physics Computation

[ ICCP’14 ] 

[ Opt Lett’14] 

[ IEEE’17 ] 

[ CVPR’16] 

[ IJCV’17] [ CVPR’15 ] [ ToG’16 ] 

[ ToG’13 ]

[ ICCV’15] 

Health 
Applications



Canon Document Scanner into an X-ray imager?

Human hand

$50 Document Scanner

Kadambi et al. 2018



The future of image processing is 7D?

Polarization for 3D Transient Imaging Space-Transient Imaging

7D Image Processing
Academic Questions: 
How do multiple bounces relate to polarization?
How can we overcome diffraction?
How does scatter relate to transience?
Provable Guarantees of Imaging Correctness?






Driving through Fog: Separate ballistic and scattered photons based on 
minute axial path delays or polarimetric signal



Instantiate

Cast scattering in plenoptic context 

Single-scatter models

Propose inverse problems

Driving through Fog

What are other possible mountains?

Multi-scatter models



Future Direction: Physics-based machine learning

Image-based Machine 
Learning [ Laina16 ]

Trained on 3D Database 
from NYU [ Silberman12 ]

Goal: How can we unite physics 
and learning-based ideas?

Challenges to overcome:
Need specialized datasets
Need specialized CG rendering
Need to rethink algorithms
Need to justify approach



Future Direction: Proving “correctness” of an imaging approach

New problems, new bounds – novel problem 
statements require new, provable bounds

Towards optimality – can we prove 
analytically that a computational camera is the 
best possible solution? 

New systems, new simulators – e.g. puts 
pressure on SIGGRAPH and CVPR to evolve.



Demand Pressure for New Cameras

Drone Visual Systems Evolution of Nanoscopes Image Deeper through Tissue

Autonomous Driving Mobile Photography Sound + Light
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